Skip to main content

Carbon quantity and quality drives variation in cave microbial communities and regulates Mn(II) oxidation

Abstract

Cave ecosystems are carbon limited and thus are particularly susceptible to anthropogenic pollution. Yet, how carbon quality and quantity that can modulate the pathways and amount of Mn cycling in caves remains largely unknown. To explore Mn cycling, baseline bacterial, archaeal, and fungal communities associated with Mn(III/IV) oxide deposits were assessed in both relatively ‘pristine’ and anthropogenically impacted caves in the Appalachian Mountains (USA). Cave sites were then amended with various carbon sources that are commonly associated with anthropogenic input to determine whether they stimulate biotic Mn(II) oxidation in situ. Results revealed patterns between sites that had long-term exogenous carbon loading compared to sites that were relatively ‘pristine,’ particularly among Bacteria and Archaea. Carbon treatments that stimulated Mn(II) oxidation at several sites resulted in significant changes to the microbial communities, indicating that anthropogenic input can not only enhance biotic Mn(II) oxidation, but also shape community structure and diversity. Additional carbon sources amended with copper were incubated at various cave sites to test the role that Cu(II) plays in in situ biotic Mn(II) oxidation. Media supplemented with 100 µM Cu(II) inhibited bacterial Mn(II) oxidation but stimulated fungal Mn(II) oxidation, implicating fungal use of multicopper oxidase (MCO) enzymes but bacterial use of superoxide to oxidize Mn(II). In sites with low C:N ratios, the activity of the Mn(II) oxidizing enzyme manganese peroxidase (MnP) appears to be limited (particularly by MnP-utilizing Basidiomycetes and/or Zygomycetes).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

LBB:

Leucoberbelin blue

MnP:

Manganese peroxidase

MCO:

Multicopper oxidase

NMDS:

Non-metric multidimensional scaling

PCA:

Principal component analysis

SOM:

Soil organic matter

TC:

Total carbon

TN:

Total nitrogen

TOC:

Total organic carbon

References

  • Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8:626–635

    Article  Google Scholar 

  • Allison SD (2014) Modeling adaptation of carbon use efficiency in microbial communities. Front Microbiol. doi:10.3389/fmicb.2014.00571

    Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  • Andeer PF, Learman DR, McIlvin M et al (2015) Extracellular heme peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production. Environ Microbiol. doi:10.1111/1462-2920-12893

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  Google Scholar 

  • Bohu T, Santelli CM, Akob DM et al (2015) Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1. Front Microbiol. doi:10.3389/fmicb.2015.00734

    Google Scholar 

  • Bonugli-Santos RC, Durrant LR, da Silva M et al (2009) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Tech. doi:10.1016/j.enzmictec.2009.07.014

    Google Scholar 

  • Bowles TM, Acosta-Martinez V, Calderon F et al (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262

    Article  Google Scholar 

  • Brouwers GJ, de Vrind JPM, Corstjens PLAM et al (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn(II) oxidation in Pseudomonas putida GB-1. Appl Environ Microb 65(4):1762–1768

    Google Scholar 

  • Brouwers GJ, Corstjens PLAM, De Vrind JPM et al (2000) Stimulation of Mn(II) oxidation in Leptothrix discophora SS-1 by Cu(II) and sequence analysis of the region flanking the gene encoding putative multicopper oxidase MofA. Geomicrobiol J 17(1):25–33

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6(8):1621–1624

    Article  Google Scholar 

  • Carmichael SK, Bräuer SL (2015) Microbial diversity and manganese cycling: a review of Mn-oxidizing microbial cave communities. De Gruyter, Berlin

    Google Scholar 

  • Carmichael MJ, Carmichael SK, Santelli CM et al (2013a) Mn(II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the upper Tennessee River Basin. Geomicrobiol J 30(9):779–800

    Article  Google Scholar 

  • Carmichael S, Carmichael M, Strom A et al (2013b) Sustained anthropogenic impact in Carter Saltpeter Cave, Carter County, Tennessee and the potential effects on manganese cycling. J Cave Karst Stud 75(3):189–204

    Article  Google Scholar 

  • Carmichael SK, Zorn BT, Roble LA et al (2015) Nutrient input influences fungal community composition and size and can stimulate Mn(II) oxidation in caves. Environ Microbiol 7(4):592–605

    Article  Google Scholar 

  • Chen H, Marhan S, Billen N et al (2009) Soil organic-carbon and total nitrogen stocks as affected by different land uses in Baden-Wurttemberg (southwest Germany). J Plant Nutr 172:32–42

    Article  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72(7):5069–5072

    Article  Google Scholar 

  • Dick GJ, Clement BG, Webb SM et al (2009) Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume. Geochem Cosmochim Ac 73:6517–6530

    Article  Google Scholar 

  • Duckworth OW, Bargar JR, Sposito G (2009) Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Biometals 22(4):605–613

    Article  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998

    Article  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    Article  Google Scholar 

  • Eilers KG, Lauber CL, Knight R et al (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds in soil. Soil Biol Biochem 42:896–903

    Article  Google Scholar 

  • El Gheriany IA, Bocioaga D, Hay AG et al (2011) An uncertain role for Cu(II) in stimulating Mn(II) oxidation by Leptothrix discophora SS-1. Arch Microbiol 193(2):89–93

    Article  Google Scholar 

  • Geszvain K, McCarthy JK, Tebo BM (2013) Elimination of manganese(II, III) oxidation in Pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes. Appl Environ Microb 79(1):357–366

    Article  Google Scholar 

  • Goldfarb KC, Karaoz U, Hanson CA et al (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. doi:10.3389/fmicb.2011.00094

    Google Scholar 

  • Hansel CM, Zeiner CA, Santelli CM et al (2012) Mn(II) oxidation by an Ascomycete fungus is linked to superoxide production during asexual reproduction. PNAS 109(31):12621–12625

    Article  Google Scholar 

  • Hofer C, Schlosser D (1999) Novel enzymatic oxidation of Mn(II) to Mn(III) catalyzed by a fungal laccase. Fed Eur Biochem Soc 451:186–190

    Article  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Tech 30:454–466

    Article  Google Scholar 

  • Holsinger JR (1975) Descriptions of virginia caves. Virginia Division of Mineral Resources, Charlottesville

    Google Scholar 

  • Ikner LA, Toomey RS, Nolan G et al (2007) Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb Ecol 53(1):30–42

    Article  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22(21):5271–5277

    Article  Google Scholar 

  • Kuan I, Johnson KA, Tien M (1993) Kinetic analysis of manganese peroxidases. J Biol Chem 268(27):20064–20070

    Google Scholar 

  • Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171(4):257–264

    Article  Google Scholar 

  • Lauber CL, Ramirez KS, Aanderud Z et al (2013) Temporal variability in soil microbial communities across land-use types. ISME 7(8):1641–1650

    Article  Google Scholar 

  • Learman DR, Voelker BM, Vazquez-Rodriguez AI et al (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4:95–98

    Article  Google Scholar 

  • Learman DR, Voelker BM, Madden AS et al (2013) Constraints on superoxide mediated formation of manganese oxides. Front Microbiol 4:1–11

    Article  Google Scholar 

  • Luther GW (2010) The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat Geochem 16(3):395–420

    Article  Google Scholar 

  • Mandal SD, Panda AK, Lalnunmawii E et al (2015a) Illumina-based analysis of bacterial community in Khuangcherapuk cave of Mizoram, Northeast India. Genom Data 5:13–14

    Article  Google Scholar 

  • Mandal SD, Sanga Z, Kumar NS (2015b) Metagenome sequencing reveals Rhodococcus dominance in Farpuk Cave, Mizoram, Inidia, an eastern Himalayan biodiversity hot spot region. Genome Announc 3(3):e00610–e00615

    Article  Google Scholar 

  • Marques ELS, Dias JCT, Silva GS et al (2016) Effect of organic matter enrichment on the fungal community in limestone cave sediments. Genet Mol Res. doi:10.4238/gmr.15038611

    Google Scholar 

  • Masella AP, Bartram AK, Truszkowski JM et al (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform 13(1):31

    Article  Google Scholar 

  • Matsuura S, Sasaki H, Kohyama K (2012) Organic carbon stocks in grassland soils and their spatial distribution in Japan. Jpn Soc Grassl Sci 58:79–93

    Article  Google Scholar 

  • McDonald D, Clemente JC, Kuczynski J et al (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1(1):7

    Article  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217

    Article  Google Scholar 

  • Moorhead DL, Lashermes G, Sinsabaugh RL et al (2013) Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19

    Article  Google Scholar 

  • Mulder EG (1989) Leptothrix Kützing 1843, 184 AL. In: Staley JT, Bryant MP, Pfenning N, Holt JG (eds) Bergey’s Manual® of Systematic Bacteriology. Williams and Wilkins, Baltimore, pp 1998–2003

    Google Scholar 

  • Mulder EG, Van Veen WL (1963) Investigations on the Spaerotilus-Leptothrix group. Antonie Van Leeuwenhoek 29:121–153

    Article  Google Scholar 

  • Neuwirth R (2014) RColorBrewer: ColorBrewer palettes

  • Oksanen J, Blanchet FG, Kindt R et al (2016) Vegan: community ecology package

  • Ortiz M, Neilson JW, Nelson WM et al (2012) Profiling bacterial diversity and taxonomic compostion on speleothem surfaces in Kartchner Caverns, AZ. Environ Microbiol 65(2):371–383

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2-Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raymann K, Moeller AH, Goodman AL et al (2017) Unexplored archaeal diversity in the Great Ape gut microbiome. mSphere 2(1):e00026-17

  • Ruiz-Duenas FJ, Morales M, Perez-Boada M et al (2007) Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry 46:66–77

    Article  Google Scholar 

  • Santelli CM, Pfister DH, Lazarus D et al (2010) Promotion of Mn(II) oxidation and remediation of coal mine drainage in passive treatment systems by diverse fungal and bacterial communities. Appl Environ Microb 76(14):4871–4875

    Article  Google Scholar 

  • Santelli CM, Webb SM, Dohnalkova AC et al (2011) Diversity of Mn oxides produced by Mn(II)-oxidizing fungi. Geochem Cosmochim Ac 75(10):2762–2776

    Article  Google Scholar 

  • Shapiro J, Pringle A (2010) Anthropogenic influences on the diversity of fungi isolated from caves in Kentucky and Tennessee. Am Midl Nat 163(1):76–86

    Article  Google Scholar 

  • Simon KS, Buikema AL Jr (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Nat 138(2):387–401

    Article  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL et al (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16(7):930–939

    Article  Google Scholar 

  • Sunda WG, Kieber DJ (1994) Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 367(6458):62–64

    Article  Google Scholar 

  • Tang Y, Zeiner CA, Santelli CM et al (2013) Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ Microbiol 15(4):1063–1077

    Article  Google Scholar 

  • Thompson IA, Huber DM, Schulze DG (2006) Evidence of a multicopper oxidase in Mn oxidation by Gaeumannomyces grainis var. tritici. Biochem Cell Biol 96(2):130–136

    Google Scholar 

  • van Bemmelen JM (1891) Ueber die Bestimmungen des Wassers, des Humus, des Schwefels, der in den Colloidalen Silikaten gebunden Kieselsaeueren, des manganese, u.s.w. im Ackerboden. Landwirtsch Vers Stn 37:279–290

    Google Scholar 

  • Vanderwolf KJ, Malloch D, McAlpine DF et al (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42(1):77–96

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment for rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73(16):5261–5267

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

  • Yin H, Liu F, Feng X et al (2011) Co(II)-exchange mechanism of birnessite and its application for the removal of Pb(II) and As(III). J Hazard Mater 196:318–326

    Article  Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 7(5):e38183

    Article  Google Scholar 

  • Zorn BT (2014) Illumina sequencing of fungal assemblages reveals compositional shifts as a result of nutrient loading within cave sediments. M.S. Thesis: 56

Download references

Acknowledgements

The authors are very grateful to the two anonymous reviewers who provided thoughtful and constructive comments and suggestions. Additionally, the authors thank Dr. Chuanhui Gu for help performing IC analyses and allowing us to use his YSI handheld multimeter probe. Javier Cattle, Michael Rojas-Steinbacker, Andrew Hughes, and Jacob Montgomery helped with field work and isolating and identifying Mn(II)-oxidizing cultures and Travis Hartney performed XRD analysis on sediments. The authors are also grateful to Jon Rossi, Milton Starnes, and Melanie Hoff for their guidance and access to their caves. Partial support for this project was provided by Appalachian State University, Appalachian Women Scientists’ Seed and Research Infrastructure Support grants awarded to SL Bräuer, and the following Grants awarded to ML Cloutier: Appalachian State University, Office of Student Research, Graduate Student Association Senate, Cratis D. Williams Graduate Research Grants, and Creating a Healthy, Just and Sustainable Society Student Research Grants, Philip M. Smith Graduate Research Grant for Cave and Karst Research, and Geological Society of America, Graduate Student Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanna L. Bräuer.

Additional information

Responsible Editor: Sasha C. Reed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2728 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cloutier, M.L.C., Carmichael, S.K., Carson, M.A. et al. Carbon quantity and quality drives variation in cave microbial communities and regulates Mn(II) oxidation. Biogeochemistry 134, 77–94 (2017). https://doi.org/10.1007/s10533-017-0343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0343-8

Keywords

  • Manganese oxidation
  • Caves
  • Exogenous carbon
  • Fungal communities
  • Bacterial communities
  • Enzyme