Skip to main content
Log in

Distinct fates of atmogenic NH4 + and NO3 in subtropical, N-saturated forest soils

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Subtropical forests receive increasing amounts of atmogenic nitrogen (N), both as ammonium (NH4 +) and nitrate (NO3 ). Previous long-term studies indicate efficient turnover of atmogenic NH4 + to NO3 in weathered, acidic soils of the subtropics, leading to excessive NO3 leaching. To clarify the mechanism governing the fate of atmogenic inputs in these soils, we conducted an in situ 15N tracing experiment in the TieShanPing (TSP) forested catchment, SW China. 15NH4NO3, NH 154 NO3 and 15N-glutamic acid were applied to an upland hillslope soil and inorganic N, total soil N and nitrous oxide (N2O) were monitored for nine days. Incorporation of 15NO3 into soil organic N was negligible and 80% of the applied label was lost from the top soil (0–15 cm) primarily by leaching within 9 days. In contrast, 15NH4 + was largely retained in soil organic N. However, instant production of 15NO3 in the 15NH4 + treatment suggested active nitrification. In both the 15NH4 + and 15N-glutamic acid treatments, the 15N enrichment in the NO3 pool exceeded that in the NH4 + pool one day after 15N application, suggesting preferential nitrification of added 15NH4 + with subsequent dilution of the NH4 + pool and/or immobilization of 15NH4 + followed by heterotrophic nitrification. The cumulative recovery of 15N in N2O after 9 days ranged from 2.5 to 6.0% in the 15NO3 treatment, confirming the previously reported significant response of N2O emission to N deposition. Source partitioning of 15N2O demonstrated a measurable contribution of nitrification to N2O emissions, particularly at low soil moistures. Our study emphasizes the role of a fast-cycling organic N pool (including microbial N) for retention and transformation of atmogenic NH4 + in subtropical, acid forest soils. Thus, it explains the near-quantitative leaching of deposited N (as NO3 and NH4 +) common to subtropical forest soils with chronic, elevated atmogenic N inputs by (i) negligible retention of NO3 in the soil and (ii) rapid immobilization-mineralization of NH4 + followed by nitrification. Our findings point to a leaky N cycle in N-saturated Chinese subtropical forests with consequences for regional soil acidification, N pollution of fresh waters and N2O emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber J, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems-hypotheses revisited. Bioscience 48:921–934. doi:10.2307/1313296

    Article  Google Scholar 

  • Allison SM, Prosser JI (1993) Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil Biol Biochem 25:935–941

    Article  Google Scholar 

  • Arnold J, Corre MD, Veldkamp E (2009) Soil N cycling in old-growth forests across an Andosol toposequence in Ecuador. For Ecol Manag 257:2079–2087. doi:10.1016/j.foreco.2009.02.014

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    Article  Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 72:139–157. doi:10.1890/03-8024

    Article  Google Scholar 

  • Burton SAQ, Prosser JI (2001) Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl Environ Microbiol 67:2952–2957. doi:10.1128/AEM.67.7.2952

    Article  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M et al (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B 368:20130122. doi:10.1098/rstb.2013.0122

    Article  Google Scholar 

  • Chen X, Mulder J (2007) Indicators for nitrogen status and leaching in subtropical forest ecosystems, South China. Biogeochemistry 82:165–180. doi:10.1007/s10533-006-9061-3

    Article  Google Scholar 

  • Chen Z, Ding W, Xu Y et al (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15N tracing study to literature synthesis. Soil Biol Biochem 91:65–75. doi:10.1016/j.soilbio.2015.08.026

    Article  Google Scholar 

  • Corre MD, Brumme RR, Veldkamp E, Beese FO (2007) Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Glob Chang Biol 13:1509–1527. doi:10.1111/j.1365-2486.2007.01371.x

    Article  Google Scholar 

  • Curtis CJ, Evans CD, Goodale CL, Heaton THE (2011) What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems 14:1021–1037. doi:10.1007/s10021-011-9461-7

    Article  Google Scholar 

  • Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen minearlization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349

    Article  Google Scholar 

  • Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156

    Article  Google Scholar 

  • De Boer W, Kowalchuk G (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866. doi:10.1016/s0038-0717(00)00247-9

    Article  Google Scholar 

  • De Boer W, Gunnewiek PJAK, Troelstra SR, Laanbroek HJ (1989) Two types of chemolithotrophic nitrification in acid heathland humus. Plant Soil 119:229–235. doi:10.1007/BF02370413

    Article  Google Scholar 

  • Eickenscheidt N, Brumme R, Veldkamp E (2011) Direct contribution of nitrogen deposition to nitrous oxide emissions in a temperate beech and spruce forest—a 15N tracer study. Biogeosciences 8:621–635. doi:10.5194/bg-8-621-2011

    Article  Google Scholar 

  • Evans CD, Norris D, Ostle N et al (2008) Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils. Environ Pollut 156:636–643. doi:10.1016/j.envpol.2008.06.019

    Article  Google Scholar 

  • Fang Y, Zhu W, Gundersen P et al (2009) Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems 12:33–45. doi:10.1007/s10021-008-9203-7

    Article  Google Scholar 

  • Fang Y, Gundersen P, Vogt RD et al (2011) Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. J For Res 16:341–350. doi:10.1007/s10310-011-0267-4

    Article  Google Scholar 

  • Fang Y, Koba K, Makabe A et al (2015) Microbial denitrification dominates nitrate losses from forest ecosystems. Proc Natl Acad Sci USA. doi:10.1073/pnas.1416776112

    Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in Soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 7–21

    Google Scholar 

  • Galloway J, Aber J, Erisman J et al (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

    Article  Google Scholar 

  • Gao W, Kou L, Yang H et al (2016) Are nitrate production and retention processes in subtropical acidic forest soils responsive to ammonium deposition? Soil Biol Biochem 100:102–109. doi:10.1016/j.soilbio.2016.06.002

    Article  Google Scholar 

  • Gubry-Rangin C, Hai B, Quince C et al (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci. doi:10.1073/pnas.1109000108

    Google Scholar 

  • Guo JH, Liu XJ, Zhang Y et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. doi:10.1126/science.1182570

    Article  Google Scholar 

  • Gurmesa GA, Lu X, Gundersen P et al (2016) High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest. Glob Chang Biol. 22:3608–3620. doi:10.1111/gcb.13327

    Article  Google Scholar 

  • Hart SC, Myrold DD (1996) 15N tracer studies of soil nitrogen transformations. In: Boutton TW, Yamasaki SI (eds) Mass spectrometry of soils. Marcel Dekker Inc, New York, pp 225–245

    Google Scholar 

  • Huang Y, Kang R, Mulder J et al (2015) Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China. J Geophys Res Biogeosci 120:2457–2472. doi:10.1002/2015JG003048

    Article  Google Scholar 

  • Kaiser J, Rockmann T, Brenninkmeijer CAM (2003) Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide. J Geophys Res 108:1–17. doi:10.1029/2003JD003613

    Article  Google Scholar 

  • Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36:687–699. doi:10.1016/j.soilbio.2004.01.004

    Article  Google Scholar 

  • Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data: II. Soil Sci Soc Am Proc 19:189–192

    Article  Google Scholar 

  • Larssen T, Duan L, Mulder J (2011) Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China: implications for acidification. Environ Sci Technol 45:1192–1198. doi:10.1021/es103426p

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi:10.1038/nature04983

    Article  Google Scholar 

  • Levičnik-Höfferle Š, Nicol GW, Ausec L et al (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123. doi:10.1111/j.1574-6941.2011.01275.x

    Article  Google Scholar 

  • Li Z, Wang Y, Liu Y et al (2014) Long-term effects of liming on health and growth of a Masson pine stand damaged by soil acidification in Chongqing, China. PLoS ONE 9:1–9. doi:10.1371/journal.pone.0094230

    Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    Article  Google Scholar 

  • Liu B, Mørkved PT, Frostegård A, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417. doi:10.1111/j.1574-6941.2010.00856.x

    Article  Google Scholar 

  • Liu X, Zhang Y, Han W et al (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. doi:10.1038/nature11917

    Article  Google Scholar 

  • Liu X, Xu W, Du E et al (2016) Reduced nitrogen dominated nitrogen deposition in the United States, but its contribution to nitrogen deposition in China decreased. Proc Natl Acad Sci 113:201607507. doi:10.1073/pnas.1607507113

    Google Scholar 

  • Lovett GM, Goodale CL (2011) A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–631. doi:10.1007/s10021-011-9432-z

    Article  Google Scholar 

  • Lu M, Yang Y, Luo Y et al (2011) Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050. doi:10.1111/j.1469-8137.2010.03563.x

    Article  Google Scholar 

  • Mathieu O, Hénault C, Lévêque J et al (2006) Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ Pollut 144:933–940. doi:10.1016/j.envpol.2006.02.005

    Article  Google Scholar 

  • Morley N, Baggs EM, Dörsch P, Bakken L (2008) Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2 and O2 concentrations. FEMS Microbiol Ecol 65:102–112. doi:10.1111/j.1574-6941.2008.00495.x

    Article  Google Scholar 

  • Müller C, Rutting T, Kattge J et al (2007) Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biol Biochem 39:715–726. doi:10.1016/j.soilbio.2006.09.021

    Article  Google Scholar 

  • Nieder R, Benbi DK, Scherer HW (2011) Fixation and defixation of ammonium in soils: a review. Biol Fertil Soils 47:1–14. doi:10.1007/s00374-010-0506-4

    Article  Google Scholar 

  • NSF (1975a) Water analysis (Determination of the sum of nitrite- and nitrate-nitrogen. NS 4745). Oslo

  • NSF (1975b) Water analysis (Determination of ammonium-nitrogen. NS 4746). Oslo

  • Perakis SS, Compton JE, Hedin LO (2005) N additions to an unpolluted temperate forest soil in Chile. Ecology 86:96–105. doi:10.1890/04-0415

    Article  Google Scholar 

  • Rose LA, Elliott EM, Adams MB (2015) Triple nitrate isotopes indicate differing nitrate source contributions to streams across a nitrogen saturation gradient. Ecosystems 18:1209–1223. doi:10.1007/s10021-015-9891-8

    Article  Google Scholar 

  • Rütting T, Ntaboba LC, Roobroeck D et al (2015) Leaky nitrogen cycle in pristine African montane rainforest soil. Global Biogeochem Cycles. doi:10.1002/2015GB005144.Received

    Google Scholar 

  • Sheng W, Yu G, Fang H et al (2014) Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China. PLoS ONE 9:1–8. doi:10.1371/journal.pone.0089322

    Google Scholar 

  • Shi Y, Cui S, Ju X et al (2015) Impacts of reactive nitrogen on climate change in China. Sci Rep 5:8118. doi:10.1038/srep08118

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M et al (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  Google Scholar 

  • Silver W, Herman D, Firestone M (2001) Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82:2410–2416

    Article  Google Scholar 

  • Sørbotten L, Stolte J, Wang Y, Mulder J (in press) Hydrological response and flow pathways in acrisols on a forested hillslope in monsoonal sub-tropical climate, Chonqing, Southwest. Pedosphere

  • Sotta ED, Corre MD, Veldkamp E (2008) Differing N status and N retention processes of soils under old-growth lowland forest in Eastern Amazonia, Caxiuan, Brazil. Soil Biol Biochem 40:740–750. doi:10.1016/j.soilbio.2007.10.009

    Article  Google Scholar 

  • Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:810–813

    Article  Google Scholar 

  • Stevens RJ, Laughlin RJ, Burns LC et al (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151. doi:10.1016/S0038-0717(96)00303-3

    Article  Google Scholar 

  • Stroo HF, Klein TM, Alexander M (1986) Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus. Appl Environ Microbiol 52:1107–1111. doi:10.1016/S0038-0717(01)00045-1

    Google Scholar 

  • Tahovska K, Kana J, Barta J et al (2013) Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biol Biochem 59:58–71. doi:10.1016/j.soilbio.2012.12.015

    Article  Google Scholar 

  • Templer PH, Silver WL, Pett-ridge J et al (2008) Plant and microbial controls on nitrogen retention and loss in a humid tropical forest. Ecology 89:3030–3040

    Article  Google Scholar 

  • Templer PH, Mack MC, Chapin FS et al (2012) Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology 93:1816–1829. doi:10.1890/11-1146.1

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol Anaerob Microorgan 717:179–244

    Google Scholar 

  • Tietema A, Emmett B, Gundersen P et al (1998) The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For Ecol Manag 101:19–27. doi:10.1016/S0378-1127(97)00123-0

    Article  Google Scholar 

  • Townsend AR, Howarth RW, Bazzaz FA et al (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1:240–246

    Article  Google Scholar 

  • Wang J, Yan X (2016) Denitrification in upland of China: magnitude and influencing factors. J Geophys Res Biogeosci 121:3060–3071. doi:10.1002/2016JG003541

    Google Scholar 

  • Wang Y, Solberg S, Yu P et al (2007) Assessments of tree crown condition of two Masson pine forests in the acid rain region in south China. For Ecol Manag 242:530–540. doi:10.1016/j.foreco.2007.01.065

    Article  Google Scholar 

  • Xu W, Luo XS, Pan YP et al (2015) Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos Chem Phys 15:12345–12360. doi:10.5194/acp-15-12345-2015

    Article  Google Scholar 

  • Yakir D, da Sternberg L, da Sternberg L (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123(3):297–311

    Article  Google Scholar 

  • Yu L, Zhu J, Mulder J, Dörsch P (2016) Multiyear dual nitrate isotope signatures suggest that N-saturated subtropical forested catchments can act as robust N sinks. Glob Chang Biol 22:3662–3674. doi:10.1111/gcb.13333

    Article  Google Scholar 

  • Zhang L, Altabet MA, Wu T, Hadas O (2007) Sensitive measurement of NH4 + 15N/14N (δ15NH4 +) at natural abundance levels in fresh and saltwaters. Anal Chem 79:5297–5303. doi:10.1021/ac070106d

    Article  Google Scholar 

  • Zhang J, Cai Z, Zhu T (2011) N2O production pathways in the subtropical acid forest soils in China. Environ Res 111:643–649. doi:10.1016/j.envres.2011.04.005

    Article  Google Scholar 

  • Zhang J, Cai Z, Zhu T et al (2013) Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci Rep 3:2342. doi:10.1038/srep02342

    Article  Google Scholar 

  • Zhang J, Müller C, Cai Z (2015) Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol Biochem 84:199–209. doi:10.1016/j.soilbio.2015.02.028

    Article  Google Scholar 

  • Zhu J, Mulder J, Bakken L, Dörsch P (2013a) The importance of denitrification for N2O emissions from an N-saturated forest in SW China: results from in situ 15N labeling experiments. Biogeochemistry 116:103–117. doi:10.1007/s10533-013-9883-8

    Article  Google Scholar 

  • Zhu J, Mulder J, Solheimslid SO, Dörsch P (2013b) Functional traits of denitrification in a subtropical forest catchment in China with high atmogenic N deposition. Soil Biol Biochem 57:577–586. doi:10.1016/j.soilbio.2012.09.017

    Article  Google Scholar 

  • Zhu J, Mulder J, Wu LP et al (2013c) Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China. Biogeosciences 10:1309–1321. doi:10.5194/bg-10-1309-2013

    Article  Google Scholar 

  • Zhu T, Meng T, Zhang J et al (2013d) Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol Fertil Soils 49:323–331. doi:10.1007/s00374-012-0725-y

    Article  Google Scholar 

  • Zhu T, Meng T, Zhang J, Zhong W, Müller C, Cai Z et al (2014) Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China. J Soils Sediments 15:705–709. doi:10.1007/s11368-014-1048-4

    Article  Google Scholar 

Download references

Acknowledgements

LY thanks the China Scholarship Council (CSC) for supporting his Ph.D. study. Support from the Norwegian Research Council to project 209696/E10 ‘Forest in South China: an important sink for reactive nitrogen and a regional hotspot for N2O?’ is gratefully acknowledged. We thank Prof. Duan Lei, Dr. Wang Yihao, Wang Jiaqi, Zhang Ting, Yang Hanyue, Wu Liping, Kai Xuan and Zou Mingquan for their help with the data collection throughout the field experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dörsch.

Additional information

Responsible Editor: Chris D. Evans.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Kang, R., Mulder, J. et al. Distinct fates of atmogenic NH4 + and NO3 in subtropical, N-saturated forest soils. Biogeochemistry 133, 279–294 (2017). https://doi.org/10.1007/s10533-017-0332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0332-y

Keywords

Navigation