, Volume 133, Issue 3, pp 279–294 | Cite as

Distinct fates of atmogenic NH4 + and NO3 in subtropical, N-saturated forest soils

  • Longfei Yu
  • Ronghua Kang
  • Jan Mulder
  • Jing Zhu
  • Peter Dörsch


Subtropical forests receive increasing amounts of atmogenic nitrogen (N), both as ammonium (NH4 +) and nitrate (NO3 ). Previous long-term studies indicate efficient turnover of atmogenic NH4 + to NO3 in weathered, acidic soils of the subtropics, leading to excessive NO3 leaching. To clarify the mechanism governing the fate of atmogenic inputs in these soils, we conducted an in situ 15N tracing experiment in the TieShanPing (TSP) forested catchment, SW China. 15NH4NO3, NH 4 15 NO3 and 15N-glutamic acid were applied to an upland hillslope soil and inorganic N, total soil N and nitrous oxide (N2O) were monitored for nine days. Incorporation of 15NO3 into soil organic N was negligible and 80% of the applied label was lost from the top soil (0–15 cm) primarily by leaching within 9 days. In contrast, 15NH4 + was largely retained in soil organic N. However, instant production of 15NO3 in the 15NH4 + treatment suggested active nitrification. In both the 15NH4 + and 15N-glutamic acid treatments, the 15N enrichment in the NO3 pool exceeded that in the NH4 + pool one day after 15N application, suggesting preferential nitrification of added 15NH4 + with subsequent dilution of the NH4 + pool and/or immobilization of 15NH4 + followed by heterotrophic nitrification. The cumulative recovery of 15N in N2O after 9 days ranged from 2.5 to 6.0% in the 15NO3 treatment, confirming the previously reported significant response of N2O emission to N deposition. Source partitioning of 15N2O demonstrated a measurable contribution of nitrification to N2O emissions, particularly at low soil moistures. Our study emphasizes the role of a fast-cycling organic N pool (including microbial N) for retention and transformation of atmogenic NH4 + in subtropical, acid forest soils. Thus, it explains the near-quantitative leaching of deposited N (as NO3 and NH4 +) common to subtropical forest soils with chronic, elevated atmogenic N inputs by (i) negligible retention of NO3 in the soil and (ii) rapid immobilization-mineralization of NH4 + followed by nitrification. Our findings point to a leaky N cycle in N-saturated Chinese subtropical forests with consequences for regional soil acidification, N pollution of fresh waters and N2O emission.


N deposition 15N tracer Gross N transformation Nitrification Denitrification Nitrate leaching N2O emission 



LY thanks the China Scholarship Council (CSC) for supporting his Ph.D. study. Support from the Norwegian Research Council to project 209696/E10 ‘Forest in South China: an important sink for reactive nitrogen and a regional hotspot for N2O?’ is gratefully acknowledged. We thank Prof. Duan Lei, Dr. Wang Yihao, Wang Jiaqi, Zhang Ting, Yang Hanyue, Wu Liping, Kai Xuan and Zou Mingquan for their help with the data collection throughout the field experiment.

Supplementary material

10533_2017_332_MOESM1_ESM.docx (4.9 mb)
Supplementary material 1 (DOCX 4984 kb)


  1. Aber J, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems-hypotheses revisited. Bioscience 48:921–934. doi: 10.2307/1313296 CrossRefGoogle Scholar
  2. Allison SM, Prosser JI (1993) Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil Biol Biochem 25:935–941CrossRefGoogle Scholar
  3. Arnold J, Corre MD, Veldkamp E (2009) Soil N cycling in old-growth forests across an Andosol toposequence in Ecuador. For Ecol Manag 257:2079–2087. doi: 10.1016/j.foreco.2009.02.014 CrossRefGoogle Scholar
  4. Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity. Ecol Appl 20:30–59. doi: 10.1890/08-1140.1 CrossRefGoogle Scholar
  5. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 72:139–157. doi: 10.1890/03-8024 CrossRefGoogle Scholar
  6. Burton SAQ, Prosser JI (2001) Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl Environ Microbiol 67:2952–2957. doi: 10.1128/AEM.67.7.2952 CrossRefGoogle Scholar
  7. Butterbach-Bahl K, Baggs EM, Dannenmann M et al (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B 368:20130122. doi: 10.1098/rstb.2013.0122 CrossRefGoogle Scholar
  8. Chen X, Mulder J (2007) Indicators for nitrogen status and leaching in subtropical forest ecosystems, South China. Biogeochemistry 82:165–180. doi: 10.1007/s10533-006-9061-3 CrossRefGoogle Scholar
  9. Chen Z, Ding W, Xu Y et al (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15N tracing study to literature synthesis. Soil Biol Biochem 91:65–75. doi: 10.1016/j.soilbio.2015.08.026 CrossRefGoogle Scholar
  10. Corre MD, Brumme RR, Veldkamp E, Beese FO (2007) Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Glob Chang Biol 13:1509–1527. doi: 10.1111/j.1365-2486.2007.01371.x CrossRefGoogle Scholar
  11. Curtis CJ, Evans CD, Goodale CL, Heaton THE (2011) What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems 14:1021–1037. doi: 10.1007/s10021-011-9461-7 CrossRefGoogle Scholar
  12. Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen minearlization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349CrossRefGoogle Scholar
  13. Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156CrossRefGoogle Scholar
  14. De Boer W, Kowalchuk G (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866. doi: 10.1016/s0038-0717(00)00247-9 CrossRefGoogle Scholar
  15. De Boer W, Gunnewiek PJAK, Troelstra SR, Laanbroek HJ (1989) Two types of chemolithotrophic nitrification in acid heathland humus. Plant Soil 119:229–235. doi: 10.1007/BF02370413 CrossRefGoogle Scholar
  16. Eickenscheidt N, Brumme R, Veldkamp E (2011) Direct contribution of nitrogen deposition to nitrous oxide emissions in a temperate beech and spruce forest—a 15N tracer study. Biogeosciences 8:621–635. doi: 10.5194/bg-8-621-2011 CrossRefGoogle Scholar
  17. Evans CD, Norris D, Ostle N et al (2008) Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils. Environ Pollut 156:636–643. doi: 10.1016/j.envpol.2008.06.019 CrossRefGoogle Scholar
  18. Fang Y, Zhu W, Gundersen P et al (2009) Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems 12:33–45. doi: 10.1007/s10021-008-9203-7 CrossRefGoogle Scholar
  19. Fang Y, Gundersen P, Vogt RD et al (2011) Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. J For Res 16:341–350. doi: 10.1007/s10310-011-0267-4 CrossRefGoogle Scholar
  20. Fang Y, Koba K, Makabe A et al (2015) Microbial denitrification dominates nitrate losses from forest ecosystems. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1416776112 Google Scholar
  21. Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in Soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 7–21Google Scholar
  22. Galloway J, Aber J, Erisman J et al (2003) The nitrogen cascade. Bioscience 53:341–356CrossRefGoogle Scholar
  23. Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi: 10.1126/science.1136674 CrossRefGoogle Scholar
  24. Gao W, Kou L, Yang H et al (2016) Are nitrate production and retention processes in subtropical acidic forest soils responsive to ammonium deposition? Soil Biol Biochem 100:102–109. doi: 10.1016/j.soilbio.2016.06.002 CrossRefGoogle Scholar
  25. Gubry-Rangin C, Hai B, Quince C et al (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci. doi: 10.1073/pnas.1109000108 Google Scholar
  26. Guo JH, Liu XJ, Zhang Y et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. doi: 10.1126/science.1182570 CrossRefGoogle Scholar
  27. Gurmesa GA, Lu X, Gundersen P et al (2016) High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest. Glob Chang Biol. 22:3608–3620. doi: 10.1111/gcb.13327 CrossRefGoogle Scholar
  28. Hart SC, Myrold DD (1996) 15N tracer studies of soil nitrogen transformations. In: Boutton TW, Yamasaki SI (eds) Mass spectrometry of soils. Marcel Dekker Inc, New York, pp 225–245Google Scholar
  29. Huang Y, Kang R, Mulder J et al (2015) Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China. J Geophys Res Biogeosci 120:2457–2472. doi: 10.1002/2015JG003048 CrossRefGoogle Scholar
  30. Kaiser J, Rockmann T, Brenninkmeijer CAM (2003) Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide. J Geophys Res 108:1–17. doi: 10.1029/2003JD003613 CrossRefGoogle Scholar
  31. Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36:687–699. doi: 10.1016/j.soilbio.2004.01.004 CrossRefGoogle Scholar
  32. Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data: II. Soil Sci Soc Am Proc 19:189–192CrossRefGoogle Scholar
  33. Larssen T, Duan L, Mulder J (2011) Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China: implications for acidification. Environ Sci Technol 45:1192–1198. doi: 10.1021/es103426p CrossRefGoogle Scholar
  34. Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi: 10.1038/nature04983 CrossRefGoogle Scholar
  35. Levičnik-Höfferle Š, Nicol GW, Ausec L et al (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123. doi: 10.1111/j.1574-6941.2011.01275.x CrossRefGoogle Scholar
  36. Li Z, Wang Y, Liu Y et al (2014) Long-term effects of liming on health and growth of a Masson pine stand damaged by soil acidification in Chongqing, China. PLoS ONE 9:1–9. doi: 10.1371/journal.pone.0094230 Google Scholar
  37. Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272CrossRefGoogle Scholar
  38. Liu B, Mørkved PT, Frostegård A, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417. doi: 10.1111/j.1574-6941.2010.00856.x CrossRefGoogle Scholar
  39. Liu X, Zhang Y, Han W et al (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. doi: 10.1038/nature11917 CrossRefGoogle Scholar
  40. Liu X, Xu W, Du E et al (2016) Reduced nitrogen dominated nitrogen deposition in the United States, but its contribution to nitrogen deposition in China decreased. Proc Natl Acad Sci 113:201607507. doi: 10.1073/pnas.1607507113 Google Scholar
  41. Lovett GM, Goodale CL (2011) A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–631. doi: 10.1007/s10021-011-9432-z CrossRefGoogle Scholar
  42. Lu M, Yang Y, Luo Y et al (2011) Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050. doi: 10.1111/j.1469-8137.2010.03563.x CrossRefGoogle Scholar
  43. Mathieu O, Hénault C, Lévêque J et al (2006) Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ Pollut 144:933–940. doi: 10.1016/j.envpol.2006.02.005 CrossRefGoogle Scholar
  44. Morley N, Baggs EM, Dörsch P, Bakken L (2008) Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2 and O2 concentrations. FEMS Microbiol Ecol 65:102–112. doi: 10.1111/j.1574-6941.2008.00495.x CrossRefGoogle Scholar
  45. Müller C, Rutting T, Kattge J et al (2007) Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biol Biochem 39:715–726. doi: 10.1016/j.soilbio.2006.09.021 CrossRefGoogle Scholar
  46. Nieder R, Benbi DK, Scherer HW (2011) Fixation and defixation of ammonium in soils: a review. Biol Fertil Soils 47:1–14. doi: 10.1007/s00374-010-0506-4 CrossRefGoogle Scholar
  47. NSF (1975a) Water analysis (Determination of the sum of nitrite- and nitrate-nitrogen. NS 4745). OsloGoogle Scholar
  48. NSF (1975b) Water analysis (Determination of ammonium-nitrogen. NS 4746). OsloGoogle Scholar
  49. Perakis SS, Compton JE, Hedin LO (2005) N additions to an unpolluted temperate forest soil in Chile. Ecology 86:96–105. doi: 10.1890/04-0415 CrossRefGoogle Scholar
  50. Rose LA, Elliott EM, Adams MB (2015) Triple nitrate isotopes indicate differing nitrate source contributions to streams across a nitrogen saturation gradient. Ecosystems 18:1209–1223. doi: 10.1007/s10021-015-9891-8 CrossRefGoogle Scholar
  51. Rütting T, Ntaboba LC, Roobroeck D et al (2015) Leaky nitrogen cycle in pristine African montane rainforest soil. Global Biogeochem Cycles. doi: 10.1002/2015GB005144.Received Google Scholar
  52. Sheng W, Yu G, Fang H et al (2014) Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China. PLoS ONE 9:1–8. doi: 10.1371/journal.pone.0089322 Google Scholar
  53. Shi Y, Cui S, Ju X et al (2015) Impacts of reactive nitrogen on climate change in China. Sci Rep 5:8118. doi: 10.1038/srep08118 CrossRefGoogle Scholar
  54. Sigman DM, Casciotti KL, Andreani M et al (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153CrossRefGoogle Scholar
  55. Silver W, Herman D, Firestone M (2001) Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82:2410–2416CrossRefGoogle Scholar
  56. Sørbotten L, Stolte J, Wang Y, Mulder J (in press) Hydrological response and flow pathways in acrisols on a forested hillslope in monsoonal sub-tropical climate, Chonqing, Southwest. PedosphereGoogle Scholar
  57. Sotta ED, Corre MD, Veldkamp E (2008) Differing N status and N retention processes of soils under old-growth lowland forest in Eastern Amazonia, Caxiuan, Brazil. Soil Biol Biochem 40:740–750. doi: 10.1016/j.soilbio.2007.10.009 CrossRefGoogle Scholar
  58. Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:810–813CrossRefGoogle Scholar
  59. Stevens RJ, Laughlin RJ, Burns LC et al (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151. doi: 10.1016/S0038-0717(96)00303-3 CrossRefGoogle Scholar
  60. Stroo HF, Klein TM, Alexander M (1986) Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus. Appl Environ Microbiol 52:1107–1111. doi: 10.1016/S0038-0717(01)00045-1 Google Scholar
  61. Tahovska K, Kana J, Barta J et al (2013) Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biol Biochem 59:58–71. doi: 10.1016/j.soilbio.2012.12.015 CrossRefGoogle Scholar
  62. Templer PH, Silver WL, Pett-ridge J et al (2008) Plant and microbial controls on nitrogen retention and loss in a humid tropical forest. Ecology 89:3030–3040CrossRefGoogle Scholar
  63. Templer PH, Mack MC, Chapin FS et al (2012) Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology 93:1816–1829. doi: 10.1890/11-1146.1 CrossRefGoogle Scholar
  64. Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol Anaerob Microorgan 717:179–244Google Scholar
  65. Tietema A, Emmett B, Gundersen P et al (1998) The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For Ecol Manag 101:19–27. doi: 10.1016/S0378-1127(97)00123-0 CrossRefGoogle Scholar
  66. Townsend AR, Howarth RW, Bazzaz FA et al (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1:240–246CrossRefGoogle Scholar
  67. Wang J, Yan X (2016) Denitrification in upland of China: magnitude and influencing factors. J Geophys Res Biogeosci 121:3060–3071. doi: 10.1002/2016JG003541 Google Scholar
  68. Wang Y, Solberg S, Yu P et al (2007) Assessments of tree crown condition of two Masson pine forests in the acid rain region in south China. For Ecol Manag 242:530–540. doi: 10.1016/j.foreco.2007.01.065 CrossRefGoogle Scholar
  69. Xu W, Luo XS, Pan YP et al (2015) Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos Chem Phys 15:12345–12360. doi: 10.5194/acp-15-12345-2015 CrossRefGoogle Scholar
  70. Yakir D, da Sternberg L, da Sternberg L (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123(3):297–311CrossRefGoogle Scholar
  71. Yu L, Zhu J, Mulder J, Dörsch P (2016) Multiyear dual nitrate isotope signatures suggest that N-saturated subtropical forested catchments can act as robust N sinks. Glob Chang Biol 22:3662–3674. doi: 10.1111/gcb.13333 CrossRefGoogle Scholar
  72. Zhang L, Altabet MA, Wu T, Hadas O (2007) Sensitive measurement of NH4 + 15N/14N (δ15NH4 +) at natural abundance levels in fresh and saltwaters. Anal Chem 79:5297–5303. doi: 10.1021/ac070106d CrossRefGoogle Scholar
  73. Zhang J, Cai Z, Zhu T (2011) N2O production pathways in the subtropical acid forest soils in China. Environ Res 111:643–649. doi: 10.1016/j.envres.2011.04.005 CrossRefGoogle Scholar
  74. Zhang J, Cai Z, Zhu T et al (2013) Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci Rep 3:2342. doi: 10.1038/srep02342 CrossRefGoogle Scholar
  75. Zhang J, Müller C, Cai Z (2015) Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol Biochem 84:199–209. doi: 10.1016/j.soilbio.2015.02.028 CrossRefGoogle Scholar
  76. Zhu J, Mulder J, Bakken L, Dörsch P (2013a) The importance of denitrification for N2O emissions from an N-saturated forest in SW China: results from in situ 15N labeling experiments. Biogeochemistry 116:103–117. doi: 10.1007/s10533-013-9883-8 CrossRefGoogle Scholar
  77. Zhu J, Mulder J, Solheimslid SO, Dörsch P (2013b) Functional traits of denitrification in a subtropical forest catchment in China with high atmogenic N deposition. Soil Biol Biochem 57:577–586. doi: 10.1016/j.soilbio.2012.09.017 CrossRefGoogle Scholar
  78. Zhu J, Mulder J, Wu LP et al (2013c) Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China. Biogeosciences 10:1309–1321. doi: 10.5194/bg-10-1309-2013 CrossRefGoogle Scholar
  79. Zhu T, Meng T, Zhang J et al (2013d) Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol Fertil Soils 49:323–331. doi: 10.1007/s00374-012-0725-y CrossRefGoogle Scholar
  80. Zhu T, Meng T, Zhang J, Zhong W, Müller C, Cai Z et al (2014) Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China. J Soils Sediments 15:705–709. doi: 10.1007/s11368-014-1048-4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Longfei Yu
    • 1
  • Ronghua Kang
    • 1
  • Jan Mulder
    • 1
  • Jing Zhu
    • 1
    • 2
  • Peter Dörsch
    • 1
  1. 1.Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
  2. 2.Department of Environment and ResourcesGuangxi Normal UniversityGuilinChina

Personalised recommendations