Skip to main content

Advertisement

Log in

Colimitation and the coupling of N and P uptake kinetics in oligotrophic mountain streams

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Ecosystem element cycles can be tightly linked by both abiotic and biotic processes. Evidence for multi-element limitation (i.e., colimitation) of a variety of ecosystem processes is growing rapidly, yet our ability to quantify patterns of coupled nutrient dynamics at the ecosystem level has been hindered by logistical and methodological constraints. Here we quantify coupled nitrogen and phosphorus uptake kinetics in three oligotrophic mountain streams by using novel experimental techniques that quantify colimitation dynamics across a range of nutrient concentrations and stoichiometries. We show that relative demand for NO3-N and PO4-P varied across streams, but that short term availability of one nutrient consistently resulted in elevated, but variable, uptake of the other nutrient at all sites. We used temporally offset, pulsed nutrient additions to parameterize dual-nutrient Michaelis–Menten uptake surface models that represent NO3-N and PO4-P uptake at any given concentration or dissolved NO3-N:PO4-P stoichiometry. Our results indicated that the uptake of N and P were strongly enhanced in the presence of the other nutrient. Surface models quantitatively reflect patterns of colimitation and multi-element demand in streams, and should allow for parameterization of more realistic stream network models that explicitly account for interactions among element cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386

    Article  Google Scholar 

  • Allgeier JE, Rosemond AD, Layman CA (2011) The frequency and magnitude of non-additive responses to multiple nutrient enrichment. J Appl Ecol 48:96–101. doi:10.1111/j.1365-2664.2010.01894.x

    Article  Google Scholar 

  • American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DC

  • Appling AP, Heffernan JB (2014) Nutrient limitation and physiology mediate fine-scale (de)coupling of biogeochemical cycles. Am Nat 184:384–406. doi:10.1086/677282

    Article  Google Scholar 

  • Bernhardt ES, Likens GE, Buso DC, Driscoll CT (2003) In-stream uptake dampens effects of major forest disturbance on watershed nitrogen export. Proc Natl Acad Sci USA 100:10304–10308

    Article  Google Scholar 

  • Bernot MJ, Dodds WK (2005) Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 8:442–453

    Article  Google Scholar 

  • Bothwell ML (1989) Phosphorus-limited growth dynamics of lotic periphytic diatom communities: areal biomass and cellular growth rate responses. Can J Fish Aquat Sci 46:1293–1301

    Article  Google Scholar 

  • Bracken ES, Hillebrand H, Borer ET, Seabloom EW, Cebrian J, Cleland EE, Elser JJ, Gruner DS, Harpole WS, Ngai JT, Smith JE (2015) Signatures of nutrient limitation and co-limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos 124:113–121

    Article  Google Scholar 

  • Brookshire ENJ, Valett HM, Thomas SA, Webster JR (2005) Coupled cycling of dissolved organic nitrogen and carbon in a forest stream. Ecology 86:2487–2496

    Article  Google Scholar 

  • Chapin FS III, Vitousek PM, Cleve KV (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    Article  Google Scholar 

  • Cohen MJ, Kurz MJ, Heffernan JB, Martin JB, Douglass RL, Foster CR, Thomas RG (2013) Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol Monogr 83:155–176

    Article  Google Scholar 

  • Covino TP, McGlynn BL, McNamara RA (2010a) Tracer additions for spiraling curve characterization (TASCC): quantifying stream nutrient uptake kinetics from ambient to saturation. Limnol Oceanogr Methods 8:484–498. doi:10.4319/lom.2010.8.484

    Article  Google Scholar 

  • Covino TP, McGlynn BL, Baker MA (2010b) Separating physical and biological nutrient retention and quantifying uptake kinetics from ambient to saturation in successive mountain stream reaches. J Geophys Res 115:G04010. doi:10.1029/2009JG001263

    Article  Google Scholar 

  • Covino TP, McGlynn BL, McNamara RA (2012) Land use/land cover and scale influences on in-stream nitrogen uptake kinetics. J Geophys Res 117:G02006. doi:10.1029/2011JG001874

    Article  Google Scholar 

  • Cross WF, Benstead JP, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–1912

    Article  Google Scholar 

  • Davidson EA, Samanta S, Caramori SS, Savage K (2012) The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Change Biol 18:371–384. doi:10.1111/j.1365-2486.2011.02546.x

    Article  Google Scholar 

  • Davis JC, Minshall GW (1999) Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams. Oecologia 119:247–255

    Article  Google Scholar 

  • Demars BOL (2008) Whole-stream phosphorus cycling: testing methods to assess the effect of saturation of sorption capacity on nutrient uptake length measurements. Water Res 42:2507–2516

    Article  Google Scholar 

  • Dodds WK (2007) Trophic state, eutrophication and nutrient criteria in streams. Trends Ecol Evol 22:669–676. doi:10.1016/j.tree.2007.07.010

    Article  Google Scholar 

  • Dodds WK, López AJ, Bowden WB, Gregory S, Grimm NB, Hamilton SK, Hershey AE, Martí E, McDowell WH, Meyer JL, Morrall D, Mulholland PJ, Peterson BJ, Tank JL, Valett HM, Webster JR, Wollheim WM (2002) N uptake as a function of concentration in streams. J N Am Benthol Soc 21:206–220

    Article  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification, and significance. Limnol Oceanogr 12:685–695

    Article  Google Scholar 

  • Earl SR, Valett HM, Webster JR (2006) Nitrogen saturation in stream ecosystems. Ecology 87:3140–3151

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Elser JJ, Kyle M, Steger L, Nydick KR, Baron JS (2009) Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90:3062–3073

    Article  Google Scholar 

  • Ensign SH, Doyle MW (2006) Nutrient spiraling in streams and river networks. J Geophys Res. doi:10.1029/2005JG0001114

    Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039. doi:10.1126/science.1153213

    Article  Google Scholar 

  • Finlay JC, Small GE, Sterner RW (2013) Human influences on nitrogen removal in lakes. Science 342:247–250

    Article  Google Scholar 

  • Finzi AC, Cole JJ, Doney SC, Holland EA, Jackson RB (2011) Research frontiers in the analysis of coupled biogeochemical cycles. Front Ecol Environ 9:74–80

    Article  Google Scholar 

  • Francoeur SN (2001) Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. J N Am Benthol Soc 20:358–368

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  Google Scholar 

  • Gardner KK, McGlynn BL (2009) Seasonality in spatial variability and influence of land use/land cover and watershed characteristics on streamwater nitrate concentrations in a developing watershed in the Rocky Mountain west. Water Resour Res 45:W08411. doi:10.1029/2008WR007029

    Google Scholar 

  • Gardner KK, McGlynn BL, Marshall L (2011) Quantifying watershed sensitivity to spatially variable N loading and the relative importance of watershed N retention mechanisms. Water Resour Res 47:W08524. doi:10.1029/2010WR009738

    Article  Google Scholar 

  • Gibson CA, O’Reilly CM (2012) Organic matter stoichiometry influences nitrogen and phosphorus uptake in a headwater stream. Freshw Sci 31:395–407

    Article  Google Scholar 

  • Gibson CA, O’Reilly CM, Conine AL, Lipshutz SM (2015) Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale. J Geophys Res. doi:10.1002/2014.JG002747

    Google Scholar 

  • Hall RO Jr, Tank JL (2003) Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnol Oceanogr 48:1120–1128

    Article  Google Scholar 

  • Hall RO Jr, Baker MA, Rosi-Marshall EJ, Tank JL, Newbold JD (2013) Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences 10:7323–7331. doi:10.5194/bg-10-7323-2013

    Article  Google Scholar 

  • Hansen AJ, Rasker R, Maxwell B, Rotella JJ, Johnson JD, Parmenter AW, Langner U, Cohen WB, Lawrence RL, Kraska MPV (2002) Ecological causes and consequences of demographic changes in the new west. BioScience 52:151–162

    Article  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  Google Scholar 

  • Helton AM, Poole GC, Meyer JL, Wollheim WM, Peterson BJ, Mulholland PJ, Bernhardt ES, Stanford JA, Arango C, Ashkenas LR, Cooper LW, Dodds WK, Gregory SV, Hall RO Jr, Hamilton SK, Johnson SL, McDowell WH, Potter JD, Tank JL, Thomas SM, Valett HM, Webster JR, Zeglin L (2011) Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems. Front Ecol Environ 9:229–238. doi:10.1890/080211

    Article  Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol 19:89–110

    Article  Google Scholar 

  • Johnson LT, Tank JL, Arango CP (2009) The effect of land use on dissolved organic carbon and nitrogen uptake in streams. Freshw Biol 54:2335–2350

    Article  Google Scholar 

  • Justić D, Rabalais NN, Turner RE (1995) Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull 30:41–46

    Article  Google Scholar 

  • King SA, Heffernan JB, Cohen MJ (2014) Nutrient flux, uptake, and autotrophic limitation in streams and rivers. Freshw Sci 33:85–98. doi:10.1086/674383

    Article  Google Scholar 

  • Lewis WM Jr, Wurtsabugh WA (2008) Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int Rev Hydrobiol 93:446–465

    Article  Google Scholar 

  • Lohman K, Jones JR, Baysinger-Daniel C (1991) Experimental evidence for nitrogen limitation in a northern Ozark stream. J N Am Benthol Soc 10:14–23

    Article  Google Scholar 

  • Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704

    Article  Google Scholar 

  • Martí E, Fonollà P, von Schiller D, Sabater F, Argerich A, Ribot M, Riera JL (2009) Variation in stream C, N and P uptake along an altitudinal gradient: a space-for-time analogue to assess potential impacts of climate change. Hydrol Res 40:123–137

    Article  Google Scholar 

  • Megee RD, Drake JF, Fredrickson AG, Tsuchiya HM (1972) Studies in intermicrobial symbiosis, Saccharomyces cerevisiae and Lactobacillus casei. Can J Microbiol 18:1733–1742

    Article  Google Scholar 

  • Melillo JM, Field CB, Moldan B (eds) (2003) Interactions of the major biogeochemical cycles: global change and human impacts. Island Press, Washington, DC

    Google Scholar 

  • Monod J (1950) La technique de culture continue; théorie et applications. Ann I Pasteur Paris 79:390–410

    Google Scholar 

  • Montross G, McGlynn BL, Montross S, Gardner K (2013) Nitrogen production from geochemical weathering of rocks in southwest Montana, USA. J Geophys Res. doi:10.1002/jgrg.20085

    Google Scholar 

  • Mulholland PJ, Webster JR (2010) Nutrient dynamics in streams and the role of J-NABS. J N Am Benthol Soc 29:100–117

    Article  Google Scholar 

  • Mulholland PJ, Tank JL, Webster JR, Bowden WB, Dodds WK, Gregory SV, Grimm NB, Hamilton SK, Johnson SL, Martí E, McDowell WH, Merriam JL, Meyer JL, Peterson BJ, Valett HM, Wollheim WM (2002) Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. J N Am Benthol Soc 21:544–560

    Article  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC, Hall RO Jr, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay SEG, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango CP, Beaulieu JJ, Bernot MJ, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–206. doi:10.1038/nature06686

    Article  Google Scholar 

  • O’Brien JM, Dodds WK (2010) Saturation of NO3 uptake in prairie streams as a function of acute and chronic N exposure. J N Am Benthol Soc 29:627–635

    Article  Google Scholar 

  • O’Brien JM, Dodds WK, Wilson KC, Murdock JN, Eichmiller J (2007) The saturation of N cycling in Central Plains streams: 15N experiments across a broad gradient of nitrate concentrations. Biogeochemistry 84:31–49

    Article  Google Scholar 

  • Payn RA, Webster JR, Mulholland PJ, Valett HM, Dodds WK (2005) Estimation of stream nutrient uptake from nutrient addition experiments. Limnol Oceanogr Methods 3:174–182

    Article  Google Scholar 

  • Powers SM, Stanley EH, Lottig NR (2009) Quantifying phosphorus uptake using pulse and stead-state approaches in streams. Limnol Oceanogr Methods 7:498–508

    Article  Google Scholar 

  • Reddy KR, Kadlec RH, Flaid E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146. doi:10.1080/10643389991259182

    Article  Google Scholar 

  • Rier ST, Kinek KC, Hay SE, Francoeur SN (2016) Polyphosphate plays a vital role in the phosphorus dynamics of stream periphyton. Freshw Sci 35:490–502. doi:10.1086/685859

    Article  Google Scholar 

  • Rodríguez-Cardona B, Wymore AS, McDowell WH (2015) DOC:NO3 ratios and NO3 uptake in forested headwater streams. J Geophys Res. doi:10.1002/2015JG003146

    Google Scholar 

  • Schade JD, MacNeill K, Thomas SA, McNeely FC, Welter JR, Hood JM, Goodrich M, Power ME, Finlay JC (2011) The stoichiometry of nitrogen and phosphorus spiraling in heterotrophic and autotrophic streams. Freshw Biol 56:424–436

    Article  Google Scholar 

  • Schlesinger WH, Cole JJ, Finzi AC, Holland EA (2011) Introduction to coupled biogeochemical cycles. Front Ecol Environ 9:5–8

    Article  Google Scholar 

  • Simon KS, Townsend CR, Biggs JF, Bowden WB (2005) Temporal variation of N and P uptake in 2 New Zealand streams. J N Am Benthol Soc 24:1–18

    Article  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43:313–343. doi:10.1146/annurev-ecolsys-071112-124414

    Article  Google Scholar 

  • Steinman AD, Lamberti GA, Leavitt PR (2006) Biomass and pigments of benthic algae. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, Burlington, pp 367–379

    Google Scholar 

  • Sterner RW (2008) On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433–445

    Article  Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton

    Google Scholar 

  • Stream Solute Workshop (1990) Concepts and methods for assessing solute dynamics in stream ecosystems. J N Am Benthol Soc 9:95–119

    Article  Google Scholar 

  • Trentman MT, Dodds WK, Fencl JS, Gerber K, Guarneri J, Hitchman SH, Peterson Z, Rüegg J (2015) Quantifying ambient nitrogen uptake and functional relationships of uptake versus concentration in streams: a comparison of stable isotope, pulse, and plateau approaches. Biogeochemistry 125:65–79. doi:10.1007/s10533-015-0112-5

    Article  Google Scholar 

  • Webster JR, Valett HM (2007) Solute dynamics. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 169–185

    Chapter  Google Scholar 

  • Webster JR, Newbold JD, Thomas SA, Valett HM, Mulholland PJ (2009) Nutrient uptake and mineralization during leaf decay in streams—a model simulation. Int Rev Hydrobiol 94:372–390

    Article  Google Scholar 

  • Wollheim WM, Vörösmarty CJ, Peterson BJ, Seitzinger SP, Hopkinson CS (2006) Relationship between river size and nutrient removal. Geophys Res Lett 33:L06410. doi:10.1029/2006GL025845

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Montana State University, EPA STAR Grant R832449, EPA 319 funds administered by the Montana Department of Environmental Quality, and the USGS 104(b) grant program administered by the Montana Water Center. Funding was also provided by National Science Foundation EPSCoR program (M66012/66013). We thank Erin Seybold, Kate Henderson, James Hood, and James Junker for colleague reviews and Tim Covino, Kristin Gardner, and Galena Montross for research support and collaboration. We also thank two anonymous reviewers and Dr. Chris Evans for their very constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wyatt F. Cross.

Additional information

Responsible Editor: Chris D. Evans.

Appendix: A series of figures that helps to visualize data resulting from the dual-nutrient additions

Appendix: A series of figures that helps to visualize data resulting from the dual-nutrient additions

This first figure shows concentrations of nitrate-N and phosphate-P during a typical dual-nutrient slug. The bars on the left indicate the mass of each nutrient added during the slug.

This next figure shows raw data for a typical breakthrough curve for nitrate-N and chloride during a dual slug. Phosphate-P curves look similar, but are offset in time.

This last figure shows the relationship between observed nitrate concentrations during the slug (y-axis) and expected nitrate concentrations if nitrate was not taken up by stream biota (x-axis). The expected concentration is calculated as the background-corrected chloride concentration multiplied by the ratio of nitrate to chloride in the nutrient slug. The dashed line is a 1:1 line. The difference between this line and the data points represents biological uptake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piper, L.R., Cross, W.F. & McGlynn, B.L. Colimitation and the coupling of N and P uptake kinetics in oligotrophic mountain streams. Biogeochemistry 132, 165–184 (2017). https://doi.org/10.1007/s10533-017-0294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0294-0

Keywords

Navigation