, Volume 131, Issue 3, pp 355–372 | Cite as

Uptake of ammonium and soluble reactive phosphorus in forested streams: influence of dissolved organic matter composition

  • Ashley A. CobleEmail author
  • Amy M. Marcarelli
  • Evan S. Kane
  • Casey J. Huckins


Many microbes responsible for inorganic nutrient uptake and transformation utilize dissolved organic matter (DOM) as a nutrient or energy source, but little is known about whether DOM composition is an important driver of nutrient uptake in streams. Our goal was to determine whether incorporating DOM composition metrics with other more commonly considered biological, physical, and chemical variables improved our ability to explain patterns of ammonium (\({\text{NH}}_{4}^{ + }\)–N) and soluble reactive phosphorus (SRP) uptake across 11 Lake Superior tributaries. Nutrient uptake velocities (Vf) ranged from undetectable to 14.6 mm min−1 for \({\text{NH}}_{4}^{ + }\)–N and undetectable to 7.2 mm min−1 for SRP. Logistic regressions suggested that DOM composition was a useful predictor of where SRP uptake occurred (4/11 sites) and \({\text{NH}}_{4}^{ + }\)–N concentration was a useful predictor of where \({\text{NH}}_{4}^{ + }\)–N uptake occurred (9/11 sites). Multiple regression analysis revealed that the best models included temperature, specific discharge, and canopy cover, and DOM composition as significant predictors of \({\text{NH}}_{4}^{ + }\)–N Vf. Partial least squares revealed fluorescence index (describing the source of aquatic fulvic acids), specific ultraviolet absorbance at 254 nm (an indicator of DOM aromaticity), temperature, and conductivity were highly influential predictors of \({\text{NH}}_{4}^{ + }\)–N Vf. Therefore, streams with higher temperatures, lower solute concentrations, more terrestrial DOM signal and greater aromaticity had greater \({\text{NH}}_{4}^{ + }\)–N Vf. Our results suggest that DOM composition may be an important, yet often overlooked, predictor of \({\text{NH}}_{4}^{ + }\)–N and SRP uptake in deciduous forest streams that should be considered along with commonly measured predictors.


Uptake velocity Temperate forested streams Fluorescence index Ammonium Soluble reactive phosphorus 



We thank B. Borowitz, A. P. Coble, E. Collins, J. Eikenberry, K. Heiden, J. Kiiskila, T. Matthys, K. Meingast, J. Olson, J. Ortiz, R. Van Goethem, and T. Veverica for field and laboratory assistance. We also thank Dr. V. Webster, Dr. M. Mineau, and four anonymous reviewers for providing comments which greatly improved this manuscript. This research was funded by Huron Mountain Wildlife Foundation, Michigan Technological University’s Research Excellence Fund, the USDA McIntire–Stennis Fund, the University of Michigan Water Center with funds from the Fred A. and Barbara M. Erb Family Foundation, and NASA Michigan Space Grant Consortium. A.A.C. was also supported by a Fellowship from Michigan Technological University’s GK12 Global Watershed Program, funded by National Science Foundation Award DGE-0841073. This is Contribution No. 43 of the Great Lakes Research Center at Michigan Tech.

Supplementary material

10533_2016_284_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 33 kb)


  1. Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–761CrossRefGoogle Scholar
  2. Allen NS, Hershey AE (1996) Seasonal changes in chlorophyll a response to nutrient amendments in a north shore tributary of Lake Superior. J N Am Benthol Soc 15:170–178CrossRefGoogle Scholar
  3. American Public Health Association (APHA, 2005) Standard methods for the examination of water and wastewater. American Public Health AssociationGoogle Scholar
  4. Ankers C, Walling DE, Smith RP (2003) The influence of catchment characteristics on suspended sediment properties. Hydrobiologia 494:159–167CrossRefGoogle Scholar
  5. Bechtold HA, Marcarelli AM, Baxter CV, Inouye RS (2012) Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi-arid watershed. Limnol Oceanogr 57:1544–1554. doi: 10.4319/lo.2012.57.5.1544 CrossRefGoogle Scholar
  6. Belmont P, Morris DP, Pazzaglia FJ, Peters SC (2009) Penetration of ultraviolet radiation in streams of eastern Pennsylvania: topographic controls and the role of suspended particulates. Aquat Sci 71:189–201. doi: 10.1007/s0027-009-91-20-7 CrossRefGoogle Scholar
  7. Benner R (2003) Molecular indicators of the bioavailability of dissolved organic matter. In: Findlay SE, Sinsabaugh RL (eds) Aquatic ecosystems interactivity of dissolved organic matter. Academic, San Diego, pp 121–137CrossRefGoogle Scholar
  8. Bergey EA, Getty GM (2006) A review of methods for measuring the surface area of stream substrates. Hydrobiologia 556:7–16. doi: 10.1007/s10750-005-1042-3 CrossRefGoogle Scholar
  9. Bernhardt ES, Likens GE (2002) Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83:1689–1700CrossRefGoogle Scholar
  10. Biddanda BA, Cotner JB (2002) Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems 5:431–445CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  12. Butturini A, Sabater F (1998) Ammonium and phosphate retention in a Mediterranean stream: hydrological versus temperature control. Can J Fish Aquat Sci 55:1938–1945CrossRefGoogle Scholar
  13. Carrascal LM, Galvan I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690. doi: 10.1111/j.1600-0706.2008.16881.x CrossRefGoogle Scholar
  14. Coble AA, Marcarelli AM, Kane ES (2015) Ammonium and glucose amendments stimulate dissolved organic matter mineralization in a Lake Superior tributary. J Gt Lakes Res 41:801–807. doi: 10.1016/j.jglr.2015.05.015 CrossRefGoogle Scholar
  15. Coble AA, Marcarelli AM, Kane ES, Toczydlowski D, Stottlemyer R (2016) Temporal patterns of dissolved organic matter biodegradability are similar across three rivers of varying size. J Geophys Res Biogeosci. doi: 10.1002/2015JG003218 Google Scholar
  16. Cory RM, Mcknight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149CrossRefGoogle Scholar
  17. Dalzell BJ, King JY, Mulla DJ, Finley JC, Sands GR (2011) Influence of subsurface drainage on quantity and quality of dissolved organic matter export from agricultural landscapes. J Geophys Res 116:G02023. doi: 10.1029/2010JG001540 CrossRefGoogle Scholar
  18. Davis JC, Minshall GW (1999) Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams. Oecologia 119:247–255CrossRefGoogle Scholar
  19. Ensign SC, Doyle MW (2006) Nutrient spiraling in streams and river networks. J Geophys Res 111:G04009. doi: 10.1029/2005JG000114 CrossRefGoogle Scholar
  20. Frost PC, Larson JH, Johnston CA, Young KC, Maurice PA, Lamberti GA, Bridgham SD (2006) Landscape predictors of stream dissolved organic matter concentration and physicochemistry in a Lake Superior river watershed. Aquat Sci 68:40–51. doi: 10.1007/s00027-005-0802-5 CrossRefGoogle Scholar
  21. Geeraert N, Omengo FO, Gover G, Bouillon S (2016) Dissolved organic carbon lability and stable isotope shifts during microbial decomposition in a tropical river system. Biogeosciences 13:517–525. doi: 10.5194/bg-13-517-2016 CrossRefGoogle Scholar
  22. Gergel SE, Turner MG, Kratz TK (1999) Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol Appl 9:1377–1390CrossRefGoogle Scholar
  23. Ghosh S, Leff LG (2013) Impacts of labile organic carbon concentration on organic and inorganic nitrogen utilization by a stream biofilm bacterial community. Appl Environ Microbiol 79:7130–7141. doi: 10.1128/AEM.01694-13 CrossRefGoogle Scholar
  24. Gough MA, Mantoura RRC, Preston M (1993) Terrestrial plant biopolymers in marine sediments. Geochim Cosmochim Acta 57:945–964CrossRefGoogle Scholar
  25. Hall RO, Tank JL (2003) Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnol Oceanogr 48:1120–1128CrossRefGoogle Scholar
  26. Hall RO, Bernhardt ES, Likens GE (2002) Relating nutrient uptake with transient storage in forested mountain streams. Limnol Oceanogr 47:255–265CrossRefGoogle Scholar
  27. Hedges JI, Blanchette RA, Weliky K, Devol AH (1988) Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study. Geochim Cosmochim Acta 52:2717–2726. doi: 10.1016/0016-7037(88)90040-3 CrossRefGoogle Scholar
  28. Helms JR, Stubbins A, Perdue EM, Green NW, Chen H, Mopper K (2013) Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar Chem 155:81–91. doi: 10.1016/j.marchem.2013.05.015 CrossRefGoogle Scholar
  29. Hill BH, Elonen CM, Jicha TM, Cotter AM, Trebitz AS, Danz NP (2006) Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshw Biol 51:1670–1683. doi: 10.111/j.1365-2427.2006.01606.x CrossRefGoogle Scholar
  30. Hill BH, Elonen CM, Jicha TM, Bolgrien DW, Moffett MF (2010) Sediment microbial enzyme activity as an indicator of nutrient limitation in the great rivers of the Upper Mississippi River Basin. Biogeochemistry 97:195–209. doi: 10.1007/s10533-009-9366-0 CrossRefGoogle Scholar
  31. Hoellein TJ, Tank JL, Rosi-Marshall EJ, Entrekin SA, Lamberti GA (2007) Controls on spatial and temporal variation of nutrient uptake in three Michigan headwater streams. Limnol Oceanogr 52:1964–1977CrossRefGoogle Scholar
  32. Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808CrossRefGoogle Scholar
  33. Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35:L03402. doi: 10.1029/2007GL032837 CrossRefGoogle Scholar
  34. Hood E, Gooseff MN, Johnson SL (2006) Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. J Geophys Res 111:G01007. doi: 10.1029/2005JG000082 CrossRefGoogle Scholar
  35. Johnson LT, Tank JL, Arango CP (2009) The effect of land use on dissolved organic carbon and nitrogen uptake in streams. Freshw Biol 54:2335–2350. doi: 10.1111/j.1365-2427.2009.02261.x CrossRefGoogle Scholar
  36. Johnson LT, Royer TV, Edgerton JM, Leff LG (2012) Manipulation of the dissolved organic carbon pool in an agricultural stream: responses in microbial community structure, denitrification, and assimilatory nitrogen uptake. Ecosystems 15:1027–1038. doi: 10.1007/s10021-012-9563-x CrossRefGoogle Scholar
  37. Kalbitz K, Wennrich R (1998) Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci Total Environ 209:27–39. doi: 10.1016/S0048-9697(97)00302-1 CrossRefGoogle Scholar
  38. Kaplan LA, Newbold JD (2003) The role of monomers in stream ecosystem metabolism. In: Findlay SE, Sinsabaugh RL (eds) Aquatic ecosystems interactivity of dissolved organic matter. Academic, San Diego, pp 97–120CrossRefGoogle Scholar
  39. Kirchman DL, Rich JH (1997) Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microb Ecol 33:11–20CrossRefGoogle Scholar
  40. Kostoglidis A, Pattiaratchi CB, Hamilton DP (2005) CDOM and its contribution to the underwater light climate of a shallow microtidal estuary in south-wester Australia. Estuar Coast Shelf Sci 63:469–477CrossRefGoogle Scholar
  41. Kothawala DN, Stedmon CA, Müller RA, Weyhenmeyer GA, Köhler SJ, Tranvik LJ (2014) Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. Glob Change Biol 20:1101–1114. doi: 10.1111/gcb.12488 CrossRefGoogle Scholar
  42. Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, SeattleGoogle Scholar
  43. Larson JH, Frost PC, Xenopoulos MA, Williams CJ, Morales-Williams AM, Vallazza JM, Nelson JC, Richardson WB (2014) Relationships between land cover and dissolved organic matter change along the river to lake transition. Ecosystems 17:1413–1425. doi: 10.1007/s10021-014-9804-2 CrossRefGoogle Scholar
  44. Lehto LL, Hill BH (2013) The effect of catchment urbanization on nutrient uptake and biofilm enzyme activity in Lake Superior (USA) tributary streams. Hydrobiologia 713:35–51. doi: 10.1007/s10750-013-1491-z CrossRefGoogle Scholar
  45. Lennon JT, Pfaff LE (2005) Source and supply of terrestrial organic matter affects aquatic microbial metabolism. Aquat Microb Ecol 39:107–119. doi: 10.3354/ame039107 CrossRefGoogle Scholar
  46. Logvinova CL, Frey KE, Mann PJ, Stubbins A, Spencer RGM (2015) Assessing the potential impacts of declining Arctic Sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. J Geophys Res Biogeosci 120:2326–2344. doi: 10.1002/2015JG003052 CrossRefGoogle Scholar
  47. Maranger R, Pullen MJ (2003) Elemental complexation by dissolved organic matter in lakes: implications for Fe speciation and the bioavailability of Fe and P. In: Findlay SE, Sinsabaugh RL (eds) Aquatic ecosystems interactivity of dissolved organic matter. Academic, New York, pp 186–214Google Scholar
  48. Marín-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer RGM (2014) Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:270–297. doi: 10.1007/s10533-013-9949-7 CrossRefGoogle Scholar
  49. Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235CrossRefGoogle Scholar
  50. Marti EJ, Sabater F (1996) High variability in temporal and spatial nutrient retention in Mediterranean streams. Ecology 77(3):854–869CrossRefGoogle Scholar
  51. Marti E, Aumatell J, Godé L, Poch M, Sabater F (2004) Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J Environ Qual 33:285–293CrossRefGoogle Scholar
  52. McCallister SL, del Giorgio PA (2012) Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. Proc Natl Acad Sci USA 109:16963–16968CrossRefGoogle Scholar
  53. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Anderson DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48. doi: 10.4319/lo.2001.46.1.0038 CrossRefGoogle Scholar
  54. McKnight DM, Hood E, Klapper L (2003) Trace organic moieties of dissolved organic material in natural waters. In: Findlay SE, Sinsabaugh RL (eds) Aquatic ecosystems interactivity of dissolved organic matter. Academic, San Diego, pp 71–96CrossRefGoogle Scholar
  55. Michigan Department of Environmental Quality (MDEQ) Geologic Survey Division (1987) Template—bedrock geology. MDEQ, LansingGoogle Scholar
  56. Mulholland PJ (1992) Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian, and instream processes. Limnol Oceanogr 37:1512–1526CrossRefGoogle Scholar
  57. Mulholland PJ, Steinman AD, Elwood JW (1990) Measurement of phosphorus uptake length in streams: comparison of radiotracer and stable PO4 releases. Can J Fish Aquat Sci 47:2351–2357CrossRefGoogle Scholar
  58. Mulholland PJ, Tank JL, Webster JR et al (2002) Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. J N Am Benthol Soc 21:544–560CrossRefGoogle Scholar
  59. Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol 14:14–36Google Scholar
  60. Opsahl S, Benner R (1998) Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43:1297–1304CrossRefGoogle Scholar
  61. Oviedo-Vargas D, Royer TV, Johnson LT (2013) Dissolved organic carbon manipulation reveals coupled cycling of carbon, nitrogen, and phosphorus in a nitrogen-rich stream. Limnol Oceanogr 58:1196–1206. doi: 10.4319/lo.2013.58.4.1196 CrossRefGoogle Scholar
  62. Payn RA, Webster JR, Mulholland PJ, Valett HM, Dodds WK (2005) Estimation of stream nutrient uptake from nutrient addition experiments. Limnol Oceanogr Methods 3:174–182CrossRefGoogle Scholar
  63. Peterson BJ, Wollheim WM, Mulholland PJ et al (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90CrossRefGoogle Scholar
  64. Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 2:187–204CrossRefGoogle Scholar
  65. Prairie YT (2008) Carbocentric limnology: looking back, looking forward. Can J Fish Aquat Sci 65:543–548CrossRefGoogle Scholar
  66. Reed HE, Martiny JBH (2007) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62:161–170CrossRefGoogle Scholar
  67. Reynolds M (1995) Geology of Tenderfoot Creek Experimental Forest, Little Belt Mountains, Meagher County, Montana. In: Farnes P (ed) Hydrologic and geologic characteristics of Tenderfoot Creek Experimental Forest, Montana. Final Report, RJVA-INT-782 92734. Intermountain Research Station Forest Service, US Department of Agriculture, BozemanGoogle Scholar
  68. Runkel RL (2015) On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage. Water Resour Res 51:6125–6142. doi: 10.1002/2015WR017201 CrossRefGoogle Scholar
  69. Sabater F, Butturini A, Martí E, Muñoz I, Romaní A, Wray J, Sabater S (2000) Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. J N Am Benthol Soc 19:609–620CrossRefGoogle Scholar
  70. Schlesinger WH, Cole JJ, Finzi AC, Holland EA (2011) Introduction to coupled biogeochemical cycles. Front Ecol Environ 9:5–8. doi: 10.1890/090235 CrossRefGoogle Scholar
  71. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi: 10.1038/nature10386 CrossRefGoogle Scholar
  72. Simon KS, Townsend CR, Biggs BJF (2005) Temporal variation of N and P uptake in 2 New Zealand streams. J N Am Benthol Soc 24(1):1–18CrossRefGoogle Scholar
  73. Sobczak WV, Findlay S, Dye S (2003) Relationships between DOC bioavailability and nitrate removal in an upland stream: an experimental approach. Biogeochemistry 62:309–327CrossRefGoogle Scholar
  74. Spencer RGM, Aiken GR, Wickland KP, Striegl RG, Hernes PJ (2008) Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River Basin, Alaska. Glob Biogeochem Cycles 22:GB4002. doi: 10.1029/2008GB003231 CrossRefGoogle Scholar
  75. Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579. doi: 10.4319/lom.2008.6.572 CrossRefGoogle Scholar
  76. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254. doi: 10.1016/S0304-4203(03)00072-0 CrossRefGoogle Scholar
  77. Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, PrincetonGoogle Scholar
  78. Sterner RW, Smutka TM, McKay RML, Xiaoming Q, Brown ET, Sherrell RM (2004) Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol Oceanogr 49:495–507CrossRefGoogle Scholar
  79. Stottlemyer R (1997) Streamwater chemistry in watersheds receiving different atmospheric inputs of H+, NH4 +, NO3 , and SO4 2−. J Am Water Resour Assoc 33:767–780CrossRefGoogle Scholar
  80. Stottlemyer R, Toczydlowski D (2006) Effect of reduced winter precipitation and increased temperature on watershed solute flux. Biogeochemistry 77:409–440. doi: 10.1007/s10533-005-1810-1 CrossRefGoogle Scholar
  81. Stream Solute Workshop (1990) Concepts and methods for assessing solute dynamics in stream ecosystems. J N Am Benthol Soc 9:95–119CrossRefGoogle Scholar
  82. Taylor BW, Keep CF, Hall RO Jr et al (2007) Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J N Am Benthol Soc 26:167–177CrossRefGoogle Scholar
  83. Thurman M (ed) (1985) Organic geochemistry of natural waters, vol 2. Springer, DordrechtGoogle Scholar
  84. Toming K, Tuvikene L, Vilbaste S, Agaslid H, Viik M, Kisan A, Feldmann T, Martma T, Jones R, Nõges T (2013) Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow eutrophic lake with a highly calcareous catchment. Limnol Oceanogr 58:1259–1270. doi: 10.4319/lo.2013.58.4.1259 CrossRefGoogle Scholar
  85. Tranvik LJ, von Wachenfeldt E (2009) Interactions of dissolved organic matter and humic substances. In: Likens GE (ed) Biogeochemistry of inland waters a derivative of encyclopedia of inland waters. Academic, San Diego, pp 464–470Google Scholar
  86. Triska FJ, Jackman AP, Duff JH, Avanzino RJ (1994) Ammonium sorption to channel and riparian sediments: a transient storage pool for dissolved inorganic nitrogen. Biogeochemistry 26:67–83CrossRefGoogle Scholar
  87. von Schiller D, Bernal S, Sabater F, Martí E (2015) A round-trip ticket: the importance of release processes for in-stream nutrient spiralling. Freshw Sci 34:20–30. doi: 10.1086/679015 CrossRefGoogle Scholar
  88. Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE (2013) Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci 6:530–533CrossRefGoogle Scholar
  89. Webster KE, Soranno PA, Cheruvelil KS et al (2008) An empirical evaluation of the nutrient-color paradigm for lakes. Limnol Oceanogr 53:1137–1148CrossRefGoogle Scholar
  90. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708CrossRefGoogle Scholar
  91. Wickland KP, Aiken GR, Butler K, Dornblaser MM, Spencer RGM, Striegl RG (2012) Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: seasonality and importance of inorganic nitrogen. Glob Biogeochem Cycles 26:GB0E03. doi: 10.1029/2012GB004342 CrossRefGoogle Scholar
  92. Williams CJ, Scott AB, Wilson HF, Xenopoulos MA (2012) Effects of land use on water column bacterial activity and enzyme stoichiometry in stream ecosystems. Aquat Sci 74:483–494. doi: 10.1007/s00027-011-0242-3 CrossRefGoogle Scholar
  93. Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254. doi: 10.1890/070140 CrossRefGoogle Scholar
  94. Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400:379–395CrossRefGoogle Scholar
  95. Wold AP, Hershey AE (1999) Spatial and temporal variability of nutrient limitation in 6 north shore tributaries to Lake Superior. J N Am Benthol Soc 18:2–14CrossRefGoogle Scholar
  96. Yamashita Y, Kloeppel BD, Knoepp J, Zausen GL, Jaffé R (2011) Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14:1110–1122. doi: 10.1007/s10021-011-9469-z CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesMichigan Technological UniversityHoughtonUSA
  2. 2.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  3. 3.Northern Research StationU.S. Forest ServiceHoughtonUSA
  4. 4.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA

Personalised recommendations