, Volume 131, Issue 3, pp 281–302 | Cite as

Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River

  • Michael Seidel
  • Thorsten Dittmar
  • Nicholas D. Ward
  • Alex V. Krusche
  • Jeffrey E. Richey
  • Patricia L. Yager
  • Patricia M. MedeirosEmail author


We analyzed the molecular composition of dissolved organic matter (DOM) in the lower Amazon River (ca. 850 km from Óbidos to the mouth) using ultrahigh-resolution mass spectrometry and geochemical tracers. Changes in DOM composition along this lower reach suggest a transition from higher plant-derived DOM to more algal/microbial-derived DOM. This result was likely due to a combination of autochthonous production, alteration of terrigenous DOM as it transits down the river, and increased algal inputs from floodplain lakes and clearwater tributaries during high discharge conditions. Spatial gradients in dissolved organic carbon (DOC) concentrations varied with discharge. Maximal DOC concentrations were observed near the mouth during high water, highlighting the importance of lateral inputs of DOM along the lower river. The majority of DOM molecular formulae did not change within the time it takes the water in the mainstem to be transported through the lower reach. This is indicative of molecules representing a mixture of compounds that are resistant to rapid alteration and reactive compounds that are continuously replenished by the lateral input of terrestrial organic matter from the landscape, tributaries, and floodplains. River water incubations revealed that photo- and bio-transformation alter at most 30% of the DOM molecular formulae. River discharge at the mouth differed from the sum of discharge measurements made at Óbidos and the main gauged tributaries in the lower Amazon. This indicates that changes in hydrology and associated variations in the source waters along the lower reach affected the molecular composition of the DOM that is being transported from the Amazon River to the coastal ocean.


Amazon River Ultra-high resolution mass spectrometry Dissolved organic matter 



We thank Katrin Klaproth (University of Oldenburg, Germany) for technical assistance. We gratefully acknowledge funding provided by the Gordon and Betty Moore Foundation (ROCA, GBMF-MMI-2293 and 2928) and FAPESP (#08/58089-9). We are also very thankful to the associate editor and the three anonymous reviewers for their detailed and thoughtful comments that greatly improved an earlier version of this manuscript. We further thank the Brazilian government for the opportunity to sample in the Amazon River.

Supplementary material

10533_2016_279_MOESM1_ESM.docx (887 kb)
Supplementary material 1 (DOCX 887 kb)


  1. Abril G, Martinez J-M, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim J-H, Bernardes MC, Savoye N, Deborde J, Souza EL, Alberic P, Landim de Souza MF, Roland F (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398CrossRefGoogle Scholar
  2. Alsdorf D, Han S-C, Bates P, Melack J (2010) Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ 114:2448–2456CrossRefGoogle Scholar
  3. Amaral J, Suhett A, Melo S, Farjalla V (2013) Seasonal variation and interaction of photodegradation and microbial metabolism of DOC in black water Amazonian ecosystems. Aquat Microb Ecol 70:157–168CrossRefGoogle Scholar
  4. Amon RMW, Benner R (1996) Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim Cosmochim Acta 60:1783–1792CrossRefGoogle Scholar
  5. Aufdenkampe AK, Hedges JI, Richey JE, Krusche AV, Llerena CA (2001) Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnol Oceanogr 46:1921–1935CrossRefGoogle Scholar
  6. Aufdenkampe AK, Mayorga E, Hedges JI, Llerena C, Quay PD, Gudeman J, Krusche AV, Richey JE (2007) Organic matter in the Peruvian headwaters of the Amazon: compositional evolution from the Andes to the lowland Amazon mainstem. Org Geochem 38:337–364CrossRefGoogle Scholar
  7. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60CrossRefGoogle Scholar
  8. Benner R, Opsahl S, Chin-Leo G, Richey JE, Forsberg BR (1995) Bacterial carbon metabolism in the Amazon River system. Limnol Oceanogr 40:1262–1270CrossRefGoogle Scholar
  9. Bernardes MC, Martinelli LA, Krusche AV, Gudeman J, Moreira M, Victoria RL, Ometto JPHB, Ballester MVR, Aufdenkampe AK, Richey JE, Hedges JI (2004) Riverine organic matter composition as a function of land use changes, southwest Amazon. Ecol Appl 14:263–279CrossRefGoogle Scholar
  10. Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA 108:19473–19481CrossRefGoogle Scholar
  11. Burkhardt S, Zondervan I, Riebesell U (1999) Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: a species comparison. Limnol Oceanogr 44:683–690CrossRefGoogle Scholar
  12. Casali S, Calijuri MDC, Barbarisi B, Renó VF, Affonso AG, Barbosa C, Silva TSF, Novo EMLDM (2011) Impact of the 2009 extreme water level variation on phytoplankton community structure in Lower Amazon floodplain lakes. Acta Limnol Bras 23:260–270CrossRefGoogle Scholar
  13. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252CrossRefGoogle Scholar
  14. Coles VJ, Brooks MT, Hopkins J, Stukel MR, Yager PL, Hood RR (2013) The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean. J Geophys Res 118:6894–6913CrossRefGoogle Scholar
  15. Descy J-P, Darchambeau F, Lambert T, Stoyneva-Gaertner MP, Bouillon S, Borges AV (2016) Phytoplankton dynamics in the Congo River. Freshw Biol. doi: 10.1111/fwb.12851 Google Scholar
  16. Dittmar T, Koch BP (2006) Thermogenic organic matter dissolved in the abyssal ocean. Mar Chem 102:208–217CrossRefGoogle Scholar
  17. Dittmar T, Koch B, Hertkorn N, Kattner G (2008) A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods 6:230–235CrossRefGoogle Scholar
  18. Dittmar T, de Rezende CE, Manecki M, Niggemann J, Coelho Ovalle AR, Stubbins A, Bernardes MC (2012) Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat Geosci 5:618–622CrossRefGoogle Scholar
  19. Duarte CM, Cebrián J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766CrossRefGoogle Scholar
  20. Ellis EE, Richey JE, Aufdenkampe AK, Krusche AV, Quay PD, Salimon C, da Cunha HB (2012) Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin. Limnol Oceanogr 57:527–540CrossRefGoogle Scholar
  21. Ertel JR, Hedges JI, Devol AH, Richey JE, Ribeiro MDNG (1986) Dissolved humic substances of the Amazon River system. Limnol Oceanogr 31:739–754CrossRefGoogle Scholar
  22. Fasching C, Behounek B, Singer GA, Battin TJ (2014) Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Sci Rep 4:4981CrossRefGoogle Scholar
  23. Ferraz LADC (1975) Tidal and current prediction for the Amazon’s north channel using a hydrodynamical-numerical model. Master Thesis, Naval Postgraduate School, MontereyGoogle Scholar
  24. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  25. Furch K, Junk WJ (1997) Physicochemical conditions in the floodplains. In: Junk WJ (ed) The Central Amazon Floodplain. Springer, Berlin, pp 69–108CrossRefGoogle Scholar
  26. Gonsior M, Peake BM, Cooper WT, Podgorski D, D’Andrilli J, Cooper WJ (2009) Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 43:698–703CrossRefGoogle Scholar
  27. Gonsior M, Zwartjes M, Cooper WJ, Song W, Ishida KP, Tseng LY, Jeung MK, Rosso D, Hertkorn N, Schmitt-Kopplin P (2011) Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. Water Res 45:2943–2953CrossRefGoogle Scholar
  28. Gonsior M, Valle J, Schmitt-Kopplin P, Hertkorn N, Bastviken D, Luek J, Harir M, Bastos W, Enrich-Prast A (2016) Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences 13:4279–4290CrossRefGoogle Scholar
  29. Guyot JL, Wasson JG (1994) Regional pattern of riverine dissolved organic carbon in the Amazon drainage basin of Bolivia. Limnol Oceanogr 39:452–458CrossRefGoogle Scholar
  30. Hedges JI, Clark WA, Quay PD, Richey JE, Devol AH, Santos UDM (1986) Compositions and fluxes of particulate organic material in the Amazon River. Limnol Oceanogr 31:717–738CrossRefGoogle Scholar
  31. Hedges JI, Cowie GL, Richey JE, Quay PD, Benner R, Strom M, Forsberg BR (1994) Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol Oceanogr 39:743–761CrossRefGoogle Scholar
  32. Hedges JI, Mayorga E, Tsamakis E, McClain ME, Aufdenkampe A, Quay P, Richey JE, Benner R, Opsahl S, Black B, Pimentel T, Quintanilla J, Maurice L (2000) Organic matter in Bolivian tributaries of the Amazon River: a comparison to the lower mainstream. Limnol Oceanogr 45:1449–1466CrossRefGoogle Scholar
  33. Hernes PJ, Benner R (2003) Photochemical and microbial degradation of dissolved lignin phenols: implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res 108:3291CrossRefGoogle Scholar
  34. Hernes PJ, Robinson AC, Aufdenkampe AK (2007) Fractionation of lignin during leaching and sorption and implications for organic matter “freshness”. Geophys Res Lett 34:L17401CrossRefGoogle Scholar
  35. Hess LL, Melack JM, Affonso AG, Barbosa C, Gastil-Buhl M, Novo EM (2015) Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35:745–756CrossRefGoogle Scholar
  36. Jaffé R, Ding Y, Niggemann J, Vähätalo AV, Stubbins A, Spencer RGM, Campbell J, Dittmar T (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–347CrossRefGoogle Scholar
  37. Junk WJ (1997) General aspects of floodplain ecology with special reference to Amazonian floodplains, The Central Amazon Floodplain. Springer, BerlinGoogle Scholar
  38. Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75:5336–5344CrossRefGoogle Scholar
  39. Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 20:926–932CrossRefGoogle Scholar
  40. Koch BP, Dittmar T (2016) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 30:250CrossRefGoogle Scholar
  41. Koch BP, Dittmar T, Witt M, Kattner G (2007) Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal Chem 79:1758–1763CrossRefGoogle Scholar
  42. Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219CrossRefGoogle Scholar
  43. Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92:23–37CrossRefGoogle Scholar
  44. Landa M, Cottrell MT, Kirchman DL, Kaiser K, Medeiros PM, Tremblay L, Batailler N, Caparros J, Catala P, Escoubeyrou K, Oriol L, Blain S, Obernosterer I (2014) Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ Microbiol 16:1668–1681CrossRefGoogle Scholar
  45. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554CrossRefGoogle Scholar
  46. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172CrossRefGoogle Scholar
  47. Manabe S, Milly PCD, Wetherald R (2004) Simulated long-term changes in river discharge and soil moisture due to global warming/Simulations à long terme de changements d’écoulement fluvial et d’humidité du sol causés par le réchauffement global. Hydrol Sci J 49:4–642CrossRefGoogle Scholar
  48. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541CrossRefGoogle Scholar
  49. McClain ME, Richey JE, Brandes JA, Pimentel TP (1997) Dissolved organic matter and terrestrial-lotic linkages in the Central Amazon basin of Brazil. Glob Biogeochem Cycles 11:295–311CrossRefGoogle Scholar
  50. Meade RH, Dunne T, Richey JE, Santos UD, Salati E (1985) Storage and remobilization of suspended sediment in the lower Amazon river of Brazil. Science 228:488–490CrossRefGoogle Scholar
  51. Medeiros PM, Seidel M, Powers LC, Dittmar T, Hansell DA, Miller WL (2015a) Dissolved organic matter composition and photochemical transformations in the Northern North Pacific Ocean. Geophys Res Lett 42:863–870CrossRefGoogle Scholar
  52. Medeiros PM, Seidel M, Ward ND, Carpenter EJ, Gomes HR, Niggemann J, Krusche AV, Richey JE, Yager PL, Dittmar T (2015b) Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Glob Biogeochem Cycles 29:677–690CrossRefGoogle Scholar
  53. Melack J, Forsberg B (2001) Biogeochemistry of Amazon floodplain lakes and associated wetlands. The biogeochemistry of the Amazon basin and its role in a changing world. Oxford University Press, Oxford, pp 235–276Google Scholar
  54. Moreira-Turcq P, Seyler P, Guyot JL, Etcheber H (2003) Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol Process 17:1329–1344CrossRefGoogle Scholar
  55. Moreira-Turcq P, Bonnet M-P, Amorim M, Bernardes M, Lagane C, Maurice L, Perez M, Seyler P (2013) Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River. Glob Biogeochem Cycles 27:119–130CrossRefGoogle Scholar
  56. Nohara D, Kitoh A, Hosaka M, Oki T (2006) Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeorol 7:1076–1089CrossRefGoogle Scholar
  57. Obernosterer I, Benner R (2004) Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol Oceanogr 49:117–124CrossRefGoogle Scholar
  58. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.3-0.
  59. Osterholz H, Dittmar T, Niggemann J (2014) Molecular evidence for rapid dissolved organic matter turnover in Arctic fjords. Mar Chem 160:1–10CrossRefGoogle Scholar
  60. Quay PD, Wilbur DO, Richey JE, Hedges JI, Devol AH (1992) Carbon cycling in the Amazon River: implications from the 13C compositions of particles and solutes. Limnol Oceanogr 37:857–871CrossRefGoogle Scholar
  61. R Core Team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna.
  62. Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409:497–500CrossRefGoogle Scholar
  63. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359CrossRefGoogle Scholar
  64. Remington S, Krusche A, Richey J (2011) Effects of DOM photochemistry on bacterial metabolism and CO2 evasion during falling water in a humic and a whitewater river in the Brazilian Amazon. Biogeochemistry 105:185–200CrossRefGoogle Scholar
  65. Richey JE, Brock JT, Naiman RJ, Wissmar RC, Stallard RF (1980) Organic carbon: oxidation and transport in the Amazon River. Science 207:1348–1351CrossRefGoogle Scholar
  66. Richey JE, Mertes LAK, Dunne T, Victoria RL, Forsberg BR, Tancredi ACNS, Oliveira E (1989) Sources and routing of the Amazon River flood wave. Glob Biogeochem Cycles 3:191–204CrossRefGoogle Scholar
  67. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  68. Riedel T, Zark M, Vähätalo A, Niggemann J, Spencer R, Hernes P, Dittmar T (2016) Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers. Front Earth Sci 4:85. doi: 10.3389/feart.2016.00085 CrossRefGoogle Scholar
  69. Satinsky B, Fortunato C, Doherty M, Smith C, Sharma S, Ward N, Krusche A, Yager P, Richey J, Moran M, Crump B (2015) Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome 3:39CrossRefGoogle Scholar
  70. Schmidt F, Elvert M, Koch BP, Witt M, Hinrichs K-U (2009) Molecular characterization of dissolved organic matter in pore water of continental shelf sediments. Geochim Cosmochim Acta 73:3337–3358CrossRefGoogle Scholar
  71. Schmidt F, Koch BP, Elvert M, Schmidt G, Witt M, Hinrichs K-U (2011) Diagenetic transformation of dissolved organic nitrogen compounds under contrasting sedimentary redox conditions in the Black Sea. Environ Sci Technol 45:5223–5229CrossRefGoogle Scholar
  72. Seidel M, Beck M, Riedel T, Waska H, Suryaputra IGNA, Schnetger B, Niggemann J, Simon M, Dittmar T (2014) Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim Cosmochim Acta 140:418–434CrossRefGoogle Scholar
  73. Seidel M, Beck M, Riedel T, Waska H, Suryaputra IGNA, Schnetger B, Greskowiak J, Niggemann J, Simon M, Dittmar T (2015a) Benthic-pelagic coupling of nutrients and dissolved organic matter composition in an intertidal sandy beach. Mar Chem 176:150–163CrossRefGoogle Scholar
  74. Seidel M, Yager PL, Ward ND, Carpenter EJ, Gomes HR, Krusche AV, Richey JE, Dittmar T, Medeiros PM (2015b) Molecular-level changes of dissolved organic matter along the Amazon river-to-ocean continuum. Mar Chem 177:218–231CrossRefGoogle Scholar
  75. Sholkovitz ER, Boyle EA, Price NB (1978) The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet Sci Lett 40:130–136CrossRefGoogle Scholar
  76. Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Monogr Biol 56:763Google Scholar
  77. Sleighter RL, Hatcher PG (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 110:140–152CrossRefGoogle Scholar
  78. Sleighter RL, Chin Y-P, Arnold WA, Hatcher PG, McCabe AJ, McAdams BC, Wallace GC (2014) Evidence of incorporation of abiotic S and N into prairie wetland dissolved organic matter. Environ Sci Technol Lett 1:345–350CrossRefGoogle Scholar
  79. Spencer RGM, Stubbins A, Hernes PJ, Baker A, Mopper K, Aufdenkampe AK, Dyda RY, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2009) Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J Geophys Res. doi: 10.1029/2009JG000968 Google Scholar
  80. Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT (2012) Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57:26–42CrossRefGoogle Scholar
  81. Stenson AC, Marshall AG, Cooper WT (2003) Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem 75:1275–1284CrossRefGoogle Scholar
  82. Stubbins A, Dittmar T (2015) Illuminating the deep: molecular signatures of photochemical alteration of dissolved organic matter from North Atlantic Deep Water. Mar Chem. doi: 10.1016/j.marchem.2015.06.020 Google Scholar
  83. Stubbins A, Spencer RGM, Chen HM, Hatcher PG, Mopper K, Hernes PJ, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2010) Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr 55:1467–1477CrossRefGoogle Scholar
  84. Vidal LO, Abril G, Artigas LF, Melo ML, Bernardes MC, Lobão LM, Reis MC, Moreira-Turcq P, Benedetti M, Tornisielo VL, Roland F (2015) Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes. Front Microbiol 6:1054CrossRefGoogle Scholar
  85. Vuorio K, Meili M, Sarvala J (2006) Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshw Biol 51:807–822CrossRefGoogle Scholar
  86. Wagner S, Riedel T, Niggemann J, Vähätalo AV, Dittmar T, Jaffé R (2015) Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers. Environ Sci Technol 49:13798–13806CrossRefGoogle Scholar
  87. Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE (2013) Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci 6:530–533CrossRefGoogle Scholar
  88. Ward ND, Krusche AV, Sawakuchi HO, Brito DC, Cunha AC, Moura JMS, da Silva R, Yager PL, Keil RG, Richey JE (2015) The compositional evolution of dissolved and particulate organic matter along the lower Amazon River—Óbidos to the ocean. Mar Chem 177:244–256CrossRefGoogle Scholar
  89. Ward ND, Bianchi TS, Sawakuchi HO, Gagne-Maynard W, Cunha AC, Brito DC, Neu V, de Matos Valerio A, da Silva R, Krusche AV, Richey JE, Keil RG (2016) The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River. J Geophys Res 121:1522–1539CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Seidel
    • 1
    • 2
  • Thorsten Dittmar
    • 2
  • Nicholas D. Ward
    • 3
    • 5
  • Alex V. Krusche
    • 4
  • Jeffrey E. Richey
    • 3
  • Patricia L. Yager
    • 1
  • Patricia M. Medeiros
    • 1
    Email author
  1. 1.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  2. 2.Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgOldenburgGermany
  3. 3.School of OceanographyUniversity of WashingtonSeattleUSA
  4. 4.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  5. 5.Department of Geological SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations