Skip to main content

Small scale variability of vertical water and dissolved organic matter fluxes in sandy Cambisol subsoils as revealed by segmented suction plates

Abstract

Dissolved organic matter (DOM) is considered as a major carbon source in subsoils. As soil water fluxes are highly variable at small scale, and transport versus sorptive retention of DOM is related to water flux and associated contact time with minerals, knowledge of the small scale spatial variability of the dissolved organic carbon (DOC) concentrations and fluxes into the subsoil is decisive for a solid estimation of organic carbon (OC) translocation into the subsoil. Here, we made advantage of novel segmented suction plates (4 × 4 segments, each 36 cm2) to analyze the small scale spatial and temporal variability of DOC transport at 10, 50 and 150 cm depth of three subsoil observatories (approximately 50 m apart) in a sandy Dystric Cambisol under beech in the Grinderwald, 40 km northwest from Hannover, Germany. Water fluxes, DOC concentrations and fluxes as well as the specific UV absorbance (SUVA) at 280 nm were determined in weekly samples from August 2014 to November 2015 for each individual segment. The DOC fluxes decreased with depth (19.6 g C m−2 year−1, 10 cm; 1.2 g C m−2 year−1, 150 cm) and were strongly related to the water fluxes. The SUVA at 280 nm also decreased with depth (0.03 L mg C−1 cm−1, 10 cm; 0.01 L mg C−1 cm−1, 150 cm), indicating a selective retention of aromatic moieties, that was eased with increasing water flux at least in the subsoil. The proportion of temporal fluctuations and small scale variability on the total variance of each parameter where determined by the calculation of intra class correlations. The seasonal heterogeneity and the small scale spatial heterogeneity were identified to be of major importance. The importance of the small scale spatial heterogeneity strongly increased with depth, pointing towards the stability of flow paths and suggesting that at a given substrate hydrological processes rather than physicochemical processes are decisive for the sorptive retention of DOM and the variability of OC accumulation in the subsoil. Our results clearly show the demand of small scale sampling for the identification of processes regarding carbon cycling in the subsoil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson S, Ingvar Nilsson S (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol Biochem 33:1181–1191. doi:10.1016/S0038-0717(01)00022-0

    Article  Google Scholar 

  2. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Statt Softw of Stat Softw 67:1–48. doi:10.18637/jss.v067.i01

    Google Scholar 

  3. Bogner C, Borken W, Huwe B (2012) Impact of preferential flow on soil chemistry of a podzol. Geoderma 175–176:37–46. doi:10.1016/j.geoderma.2012.01.019

    Article  Google Scholar 

  4. Buckingham S, Tipping E, Hamilton-Taylor J (2008) Concentrations and fluxes of dissolved organic carbon in OK topsoil. Sci Total Environ 407:460–470. doi:10.1016/j.scitotenv.2008.08.020

    Article  Google Scholar 

  5. Bundt M, Jäggi M, Blaser P, Siegwolf R, Hagedorn F (2001) Carbon and nitrogen dynamics in preferential flow paths and matrix of a forest soil. Soil Sci Soc Am J 65:1529–1538. doi:10.2136/sssaj2001.6551529x

    Article  Google Scholar 

  6. Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH (1996) Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35:471–505. doi:10.1007/BF02183037

    Article  Google Scholar 

  7. Chabbi A, Kögel-Knabner I, Rumpel C (2009) Stabilized carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol Biochem 41:256–261. doi:10.1016/j.soilbio.2008.10.033

    Article  Google Scholar 

  8. Chin Y-P, Alken G, O’Loughlin E (1994) Molecular wright, polydispersity, and sprectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858. doi:10.1021/es00060a015

    Article  Google Scholar 

  9. Clark HM, Chapmann PJ, Adamson JK, Lane SN (2005) Influence of draught-induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Chang Biol 11:791–809. doi:10.1111/j.1365-2486.2005.00937.x

    Article  Google Scholar 

  10. Don A, Bärwolff M, Kalbitz K, Andruschkewitsch R, Jungkunst HF, Schulze ED (2012) No rapid soil carbon loss after a windthrow event in the high tatra. For Ecol Manag 276:239–246. doi:10.1016/j.foreco.2012.04.010

    Article  Google Scholar 

  11. Dosskey MG, Bertsch PM (1997) Transport of dissolved organic matter through a sandy forest soil. Soil Sci Soc Am J 61:920–927. doi:10.2136/sssaj1997.03615995006100030030x

    Article  Google Scholar 

  12. Fröberg M, Berggren D, Bergkvist B, Bryant C, Mulder J (2006) Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry 77:1–23. doi:10.1007/s10533-004-0564-5

    Article  Google Scholar 

  13. Flury M, Flühler H, Jury WA, Leuenberger J (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour Res 30:1945–1954. doi:10.1029/94WR00871

    Article  Google Scholar 

  14. Ghestem M, Sidle RC, Stokes A (2011) The influence of plant root systems on subsurface flow: implications for slope stability. BioScience 61:869–879. doi:10.1525/bio.2011.61.11.6

    Article  Google Scholar 

  15. Göttlein A, Stanjek H (1996) Mico-scale variation of solid-phase properties and soil solution chemistry in a forest podzol and its relation to soil horizons. Eur J Soil Sci 47:627–636. doi:10.1111/j.1365-2389.1996.tb01861.x

    Article  Google Scholar 

  16. Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310. doi:10.1016/S0016-7061(02)00366-X

    Article  Google Scholar 

  17. Hagedorn F, Bundt M (2002) The age of preferential flow paths. Geoderma 108:119–132. doi:10.1016/S0016-7061(02)00129-5

    Article  Google Scholar 

  18. Hagedorn F, Kaiser K, Feyen H, Schleppi P (2000) Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J Environ Qual 29:288–297. doi:10.2134/jeq2000.00472425002900010036x

    Article  Google Scholar 

  19. Hagedorn F, Bruderhofer N, Ferrari A, Nklaus PA (2015) Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: biodegradation, physico-chemical retention or preferential flow. Soil Biol Biochem 88:333–343. doi:10.1016/j.soilbio.2015.06.014

    Article  Google Scholar 

  20. Hendrickx J, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: Council NR (ed) Conceptual models of flow and transport in the fractured vadose zone. National Academy, Washington, pp 149–187. doi:10.17226/10102

    Google Scholar 

  21. Hopp L, Pfeiffer S, Durner W (2006) Spatial variability of arsenic and chromium in the soil water at a former wood preserving site. J Contam Hydrol 85:159–178. doi:10.1016/j.jconhyd.2006.01.005

    Article  Google Scholar 

  22. Hur J, Lee BM, Shin H-S (2011) Microbial degradation of dissolved organic matter (DOM) and its influence on phenanthrene–DOM interactions. Chemosphere 85:1360–1367. doi:10.1016/j.chemosphere.2011.08.001

    Article  Google Scholar 

  23. Jardine PM, Wilson GV, McCarthy JF, Luxmoore RJ, Taylor DL, Zelazny LW (1990) Hydrogeochemical processes controlling the transport of dissolved organic carbon through a forested hillslope. J Contam Hydrol 6:3–19. doi:10.1016/0169-7722(90)90008-5

    Article  Google Scholar 

  24. Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546. doi:10.1111/j.1365-2389.2007.00915.x

    Article  Google Scholar 

  25. Johnson WD, Koch GG (2011) Intraclass correlation coefficient. In: Lovric M (ed) International encyclopedia of statistical science. Springer, Berlin, pp 685–687. doi:10.1007/978-3-642-04898-2_309

    Chapter  Google Scholar 

  26. Kaiser K, Guggenberger G (2005) Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil. Geoderma 127:177–187. doi:10.1016/j.geoderma.2004.12.009

    Article  Google Scholar 

  27. Kaiser K, Kalbitz K (2012) Cycling downwards-dissolved organic matter in soil. Soil Biol Biochem 52:29–32. doi:10.1016/j.soilbio.2012.04.002

    Article  Google Scholar 

  28. Kaiser K, Guggenberger G, Haumaier L, Zech W (2002) The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33:307–318. doi:10.1016/S0146-6380(01)00162-0

    Article  Google Scholar 

  29. Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60. doi:10.1002/jpln.200700043

    Article  Google Scholar 

  30. Kalbitz K, Solinger S, Parker J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soil: a review. Soil Sci 165:277–304. doi:10.1097/00010694-200004000-00001

    Article  Google Scholar 

  31. Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291. doi:10.1016/S0016-7061(02)00365-8

    Article  Google Scholar 

  32. Kalbitz K, Zuber T, Park J-H, Matzner E (2004) Environmental controls on concentrations and fluxes of dissolved organic matter in the forest floor and in soil solution. In: Matzner E (ed) Ecological studies. Biogeochemistry of forested catchments in a changing environment, vol 172. Springer, Berlin. doi:10.1007/978-3-662-06073-5_19

    Google Scholar 

  33. Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331. doi:10.1016/j.soilbio.2004.11.028

    Article  Google Scholar 

  34. Kirfel K, Hertel D, Leuschner C (2016) Vertical variability and density of fine roots in the top and subsoils of six European beech forests along an edaphic gradient in Lower Saxony (in preparation)

  35. Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199. doi:10.1016/j.soilbio.2015,01,025

    Article  Google Scholar 

  36. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. doi:10.1038/nature16069

    Article  Google Scholar 

  37. Lenth VL (2016) Least-squares means: the R Package lsmeans. J Stat Softw. doi:10.18637/jss.v069.i01

    Google Scholar 

  38. McCarthy JF, Gu B, Liang L, Mas-Pla J, Williams TM, Yeh T-CJ (1996) Field tracer tests on the mobility of natural organic matter in a sandy aquifer. Water Resour Res 32:1223–1238. doi:10.1029/96WR00285

    Article  Google Scholar 

  39. McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic carbon in the hubbard brook valley. Ecol Monogr 58:177–195. doi:10.2307/2937024

    Article  Google Scholar 

  40. Mertens J, Vanderborght J, Kasteel R, Pütz T, Merckx R, Feyen J, Smolders E (2007) Dissolved organic carbon fluxes under Bare soil. J Environ Qual 36:597–606. doi:10.2134/jeq2006.0368

    Article  Google Scholar 

  41. Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen–a synthesis for temperate forests. Biogeochemistry 52:173–205. doi:10.1023/A:1006441620810

    Article  Google Scholar 

  42. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. doi:10.1007/s10533-005-0712-6

    Article  Google Scholar 

  43. Moore TR (1989) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealland 1. Maimai. Water Resour Res 25:1321–1330. doi:10.1029/WR025i006p01321

    Article  Google Scholar 

  44. Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48. doi:10.1007/s100210000058

    Article  Google Scholar 

  45. Niebuhr J, Heinze S, Mikutta R, Preusser S, Kirfel K, Hertel D, Kandeler E, Leuschner C, Marschner B (2016) Variability of microbial activity and substrate utilization patterns in different subsoil horizons of a sandy Cambisol under European beech. Soil Biol Biochem (submitted)

  46. Nielsen KE, Ladekarl UL, Nørnberg P (1999) Dynamic soil processes on heathland due to changes in vegetation to oak and Sitka spruce. Forest Ecol Manag 114:107–116. doi:10.1016/S0378-1127(98)00385-5

    Article  Google Scholar 

  47. Peacock M, Freeman C, Gauci V, Lebron I, Evans ED (2015) Investigations of freezing and cold storage for the analysis of peatland dissolved organic carbon (DOC) and absorbance properties. Environ Sci Process Impacts 17:1290–1301. doi:10.1039/c5em00126a

    Article  Google Scholar 

  48. Qualles RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586. doi:10.2136/sssaj1992.03615995005600020038x

    Article  Google Scholar 

  49. Rieckh H, Gerke HH, Siemens J, Sommer M (2014) Water and dissolved carbon fluxes in an eroding soil landscape depending on terrain position. Vadose Zone J. doi:10.2136/vzj2013.10.0173

    Google Scholar 

  50. Sawicka K, Monteith DT, Vaguelova EI, Wade AJ, Clark JM (2016) Fine-scale temporal characterization of trends in soil water dissolved organic carbon and potential drivers. Ecol Indic. doi:10.1016/j.ecolind.2015.12.028

    Google Scholar 

  51. Scheel T, Dörfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74. doi:10.2136/sssaj2006.0111

    Google Scholar 

  52. Stevens DP, Cox JW, Chittleborough DJ (1999) Pathways of phosphorus, nitrogen, and carbon movement over and through texturally differentiated soils, South Australia. Aust J Soil Res 37:679–693

    Google Scholar 

  53. Tipping E, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Poskitt J, Rowland AP, Bol R, Harkness DD, Woof C (1999) Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ Int 25:83–95. doi:10.1016/S0160-4120(98)00098-1

    Article  Google Scholar 

  54. Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5:99–114. doi:10.2307/3001913

    Article  Google Scholar 

  55. Wickham H (2009) ggplot2. Elegant graphics for data analysis. Springer, New York. doi:10.1007/978-0-387-98141-3

    Google Scholar 

  56. Wordell-Dietrich P, Don A, Helfrich M (2016) Controlling factors for the stability of subsoil carbon in a Dystric Cambisol. Geoderma. doi:10.1016/j.geoderma.2016.08.023

    Google Scholar 

  57. Zsolnay A (1996) Dissolved humus in soil waters. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 171–224. doi:10.1016/B978-044481516-3/50005-0

    Chapter  Google Scholar 

Download references

Acknowledgments

Funding of the research was provided by the Deutsche Forschungsgemeinschaft DFG within the research unit FOR 1806 “The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)”. We would like to thank Dr. Stefan Wessel-Bothe of ecoTech Umwelt-Meßsysteme GmbH for help with establishing the soil observatories and Heike Steffen, Anne Kathrin Herwig and numerous student helpers for support in sample processing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timo Leinemann.

Additional information

Responsible Editor: Chris D. Evans.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leinemann, T., Mikutta, R., Kalbitz, K. et al. Small scale variability of vertical water and dissolved organic matter fluxes in sandy Cambisol subsoils as revealed by segmented suction plates. Biogeochemistry 131, 1–15 (2016). https://doi.org/10.1007/s10533-016-0259-8

Download citation

Keywords

  • DOC flux
  • SUVA
  • Segmented suction plates
  • Small scale variability
  • Beech forest