Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics

Abstract

Plant productivity and tissue chemistry in temperate ecosystems are largely driven by water and nitrogen (N) availability. Although changes in rainfall patterns may influence nutrient limitation, few studies have considered how these two global change factors could interact to influence terrestrial ecosystem productivity and stoichiometry. Here, we examined the influence of experimentally-increased intra-annual rainfall variability and low-level nitrogen addition on aboveground productivity, C and N pools, and C:N ratios in a restored tallgrass prairie across two growing seasons. In the drier first year of the experiment, increased rainfall variability boosted productivity and C pools. In the wetter second year, aboveground productivity and C pools increased with N addition, suggesting a switch in primary resource limitation from water to N. Increased rainfall variability also reduced aboveground N pools in the second year. Community-level C:N increased under increased rainfall variability in the wetter second year and N addition slightly reduced community C:N in both years. These changes in element pools and stoichiometry were mostly a result of increased forb dominance in response to both treatments. Overall, our findings from a restored prairie indicate that increased rainfall variability and N addition can enhance aboveground productivity and C pools, but that N pools may not have a consistent response to either global change factor. Our study also suggests that these effects are dependent on growing season precipitation patterns and are mediated by shifts in plant community composition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  2. Baer SG, Kitchen DJ, Blair JM, Rice CW (2002) Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecol Appl 12:1688–1701. doi:10.1890/1051-0761(2002)012[1688:CIESAF]2.0.CO;2

    Article  Google Scholar 

  3. Bloor JMG, Bardgett RD (2012) Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol Evol Syst 14:193–204. doi:10.1016/j.ppees.2011.12.001

    Article  Google Scholar 

  4. Borer ET, Seabloom EW, Gruner DS et al (2014) Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517–520. doi:10.1038/nature13144

    Article  Google Scholar 

  5. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–824. doi:10.1111/j.1365-2486.2008.01681.x

    Article  Google Scholar 

  6. Chapin FSI, Vitousek PM, Cleve KV (1986) The Nature of Nutrient Limitation in Plant Communities. Am Nat 127:48–58

    Article  Google Scholar 

  7. Dickson TL, Gross KL (2013) Plant community responses to long-term fertilization: changes in functional group abundance drive changes in species richness. Oecologia 173:1513–1520. doi:10.1007/s00442-013-2722-8

    Article  Google Scholar 

  8. Dupre C, Stevens CJ, Ranke T et al (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16:344–357. doi:10.1111/j.1365-2486.2009.01982.x

    Article  Google Scholar 

  9. Eskelinen A, Harrison S (2013) Exotic plant invasions under enhanced rainfall are constrained by soil nutrients and competition. Ecology 95:682–692. doi:10.1890/13-0288.1

    Article  Google Scholar 

  10. Eskelinen A, Harrison SP (2015) Resource colimitation governs plant community responses to altered precipitation. Proc Natl Acad Sci 112:13009–13014. doi:10.1073/pnas.1508170112

    Article  Google Scholar 

  11. Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.1007/BF00377192

    Article  Google Scholar 

  12. Fay PA, Carlisle JD, Danner BT et al (2002) Altered rainfall patterns, gas exchange, and growth in grasses and forbs. Int J Plant Sci 163:549–557. doi:10.1086/339718

    Article  Google Scholar 

  13. Fay PA, Carlisle JD, Knapp AK et al (2003) Productivity responses to altered rainfall patterns in a C 4-dominated grassland. Oecologia 137:245–251. doi:10.1007/s00442-003-1331-3

    Article  Google Scholar 

  14. Fierer N, Schimel JP (2002) Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787. doi:10.1016/S0038-0717(02)00007-X

    Article  Google Scholar 

  15. Foster BL, Gross KL (1998) Species Richness in a successional Grassland: effects of Nitrogen Enrichment and Plant Litter. Ecology 79:2593–2602. doi:10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2

    Article  Google Scholar 

  16. Galloway J, Dentener F, Capone D et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    Article  Google Scholar 

  17. Grant K, Kreyling J, Dienstbach LFH et al (2014) Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agric Ecosyst Environ 186:11–22. doi:10.1016/j.agee.2014.01.013

    Article  Google Scholar 

  18. Harmon ME, Silver WL, Fasth B et al (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–1338. doi:10.1111/j.1365-2486.2008.01837.x

    Article  Google Scholar 

  19. Harpole W, Tilman D (2006) Non-neutral patterns of species abundance in grassland communities. Ecol Lett 9:15–23

    Google Scholar 

  20. Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Change Biol 13:2341–2348. doi:10.1111/j.1365-2486.2007.01447.x

    Article  Google Scholar 

  21. Hautier Y, Seabloom EW, Borer ET et al (2014) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521–525. doi:10.1038/nature13014

    Article  Google Scholar 

  22. Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158:129–140. doi:10.1007/s00442-008-1116-9

    Article  Google Scholar 

  23. Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293. doi:10.1007/BF01007582

    Google Scholar 

  24. Humbert J-Y, Dwyer JM, Andrey A, Arlettaz R (2016) Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Glob Change Biol 22:110–120. doi:10.1111/gcb.12986

    Article  Google Scholar 

  25. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  26. Isbell FI, Polley HW, Wilsey BJ (2009) Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12:443–451. doi:10.1111/j.1461-0248.2009.01299.x

    Article  Google Scholar 

  27. Jentsch A, Kreyling J, Elmer M et al (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. doi:10.1111/j.1365-2745.2011.01817.x

    Article  Google Scholar 

  28. Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO(2). New Phytol 164:423–439. doi:10.1111/j.1469-8137.2004.01201.x

    Article  Google Scholar 

  29. Kinugasa T, Tsunekawa A, Shinoda M (2012) Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. Oecologia 170:857–865. doi:10.1007/s00442-012-2354-4

    Article  Google Scholar 

  30. Knapp AK, Fay PA, Blair JM et al (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298:2202–2205. doi:10.1126/science.1076347

    Article  Google Scholar 

  31. Knapp AK, Beier C, Briske DD et al (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821. doi:10.1641/B580908

    Article  Google Scholar 

  32. Knapp AK, Hoover DL, Wilcox KR et al (2015) Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob Change Biol 21:2624–2633. doi:10.1111/gcb.12888

    Article  Google Scholar 

  33. Kreyling J, Beier C (2013) Complexity in climate change manipulation experiments. Bioscience 63:763–767. doi:10.1525/bio.2013.63.9.12

    Article  Google Scholar 

  34. Kreyling J, Wenigmann M, Beierkuhnlein C, Jentsch A (2008) Effects of extreme weather events on plant productivity and tissue die-back are modified by community composition. Ecosystems 11:752–763. doi:10.1007/s10021-008-9157-9

    Article  Google Scholar 

  35. Kulmatiski A, Beard KH (2013) Woody plant encroachment facilitated by increased precipitation intensity. Nat Clim Change 3:833–837. doi:10.1038/nclimate1904

    Article  Google Scholar 

  36. Laungani R, Knops JMH (2009) The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production. GCB Bioenergy 1:392–403. doi:10.1111/j.1757-1707.2009.01031.x

    Article  Google Scholar 

  37. Leuzinger S, Luo Y, Beier C et al (2011) Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–241. doi:10.1016/j.tree.2011.02.011

    Article  Google Scholar 

  38. Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115. doi:10.1111/ele.12073

    Article  Google Scholar 

  39. Lu M, Yang Y, Luo Y et al (2011a) Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050. doi:10.1111/j.1469-8137.2010.03563.x

    Article  Google Scholar 

  40. Lu M, Zhou X, Luo Y et al (2011b) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ 140:234–244. doi:10.1016/j.agee.2010.12.010

    Article  Google Scholar 

  41. Manning P, Newington JE, Robson HR et al (2006) Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecol Lett 9:1015–1024. doi:10.1111/j.1461-0248.2006.00959.x

    Article  Google Scholar 

  42. Mueller KE, Hobbie SE, Tilman D, Reich PB (2013) Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob Change Biol 19:1249–1261. doi:10.1111/gcb.12096

    Article  Google Scholar 

  43. Mulder CPH, Jumpponen A, Hogberg P, Huss-Danell K (2002) How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia 133:412–421. doi:10.1007/s00442-002-1043-0

    Article  Google Scholar 

  44. Novotny AM, Schade JD, Hobbie SE et al (2007) Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia 151:687–696. doi:10.1007/s00442-006-0599-5

    Article  Google Scholar 

  45. Oelmann Y, Buchmann N, Gleixner G et al (2011) Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob Biogeochem Cycles 25:GB2014. doi:10.1029/2010GB003869

    Article  Google Scholar 

  46. Ordonez JC, van Bodegom PM, Witte J-PM et al (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149. doi:10.1111/j.1466-8238.2008.00441.x

    Article  Google Scholar 

  47. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149. doi:10.1007/s10533-010-9439-0

    Article  Google Scholar 

  48. Reich PB, Knops J, Tilman D et al (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–812. doi:10.1038/35071062

    Article  Google Scholar 

  49. Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi:10.1038/nature12350

    Article  Google Scholar 

  50. Rennenberg H, Dannenmann M, Gessler A et al (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11:4–23. doi:10.1111/j.1438-8677.2009.00241.x

    Article  Google Scholar 

  51. Schimel D (1995) Terrestrial ecosystems and the carbon-cycle. Glob Change Biol 1:77–91. doi:10.1111/j.1365-2486.1995.tb00008.x

    Article  Google Scholar 

  52. Schimel DS, Braswell BH, Parton WJ (1997) Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proc Natl Acad Sci 94:8280–8283

    Article  Google Scholar 

  53. Schuster MJ (2015) Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie. Oecologia. doi:10.1007/s00442-015-3396-1

    Google Scholar 

  54. Skogen KA, Holsinger KE, Cardon ZG (2011) Nitrogen deposition, competition and the decline of a regionally threatened legume, Desmodium cuspidatum. Oecologia 165:261–269. doi:10.1007/s00442-010-1818-7

    Article  Google Scholar 

  55. Smith NG, Schuster MJ, Dukes JS (2016) Rainfall variability and nitrogen addition synergistically reduce plant diversity in a restored tallgrass prairie. J Appl Ecol. doi:10.1111/1365-2664.12593

    Google Scholar 

  56. Stevens CJ, Lind EM, Hautier Y et al (2015) Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96:1459–1465. doi:10.1890/14-1902.1

    Article  Google Scholar 

  57. Stocker T, Qin D, Plattner G-K et al (2014) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  58. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632. doi:10.1038/nature04742

    Article  Google Scholar 

  59. Turner CL, Knapp AK (1996) Responses of a C4 grass and three C3 forbs to variation in nitrogen and light in tallgrass prairie. Ecology 77:1738–1749. doi:10.2307/2265779

    Article  Google Scholar 

  60. Vitousek PM, Aber JD, Howarth RW et al (1997) Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi:10.2307/2269431

    Google Scholar 

  61. Yang Y, Fang J, Ma W, Wang W (2008) Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys Res Lett 35:L23710. doi:10.1029/2008GL035408

    Article  Google Scholar 

  62. Yue K, Peng Y, Peng C et al (2016) Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci Rep 6:19895. doi:10.1038/srep19895

    Article  Google Scholar 

Download references

Acknowledgments

We thank Siying Long, Raj Lal, Tanvi Lad, Alejandro Salazar, and Emmalyn Terracciano for field assistance. The PRICLE project was supported by the Purdue Climate Change Research Center (PCCRC). M.J.S. was supported by USDA Agro-ecosystem Services National Need Fellowship. N.G.S. was supported by a NASA Earth and Space Science Fellowship and a PCCRC Graduate Fellowship. J.S.D. gratefully acknowledges support from NSF (DEB-0955771). This is publication 1637 of the PCCRC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schuster.

Additional information

Responsible Editor: Melany Fisk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3176 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuster, M.J., Smith, N.G. & Dukes, J.S. Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics. Biogeochemistry 129, 389–400 (2016). https://doi.org/10.1007/s10533-016-0240-6

Download citation

Keywords

  • Precipitation manipulation
  • Global change
  • Ecological stoichiometry
  • Nitrogen
  • Productivity
  • Grassland