Skip to main content

Advertisement

Log in

Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Plant productivity and tissue chemistry in temperate ecosystems are largely driven by water and nitrogen (N) availability. Although changes in rainfall patterns may influence nutrient limitation, few studies have considered how these two global change factors could interact to influence terrestrial ecosystem productivity and stoichiometry. Here, we examined the influence of experimentally-increased intra-annual rainfall variability and low-level nitrogen addition on aboveground productivity, C and N pools, and C:N ratios in a restored tallgrass prairie across two growing seasons. In the drier first year of the experiment, increased rainfall variability boosted productivity and C pools. In the wetter second year, aboveground productivity and C pools increased with N addition, suggesting a switch in primary resource limitation from water to N. Increased rainfall variability also reduced aboveground N pools in the second year. Community-level C:N increased under increased rainfall variability in the wetter second year and N addition slightly reduced community C:N in both years. These changes in element pools and stoichiometry were mostly a result of increased forb dominance in response to both treatments. Overall, our findings from a restored prairie indicate that increased rainfall variability and N addition can enhance aboveground productivity and C pools, but that N pools may not have a consistent response to either global change factor. Our study also suggests that these effects are dependent on growing season precipitation patterns and are mediated by shifts in plant community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Acknowledgments

We thank Siying Long, Raj Lal, Tanvi Lad, Alejandro Salazar, and Emmalyn Terracciano for field assistance. The PRICLE project was supported by the Purdue Climate Change Research Center (PCCRC). M.J.S. was supported by USDA Agro-ecosystem Services National Need Fellowship. N.G.S. was supported by a NASA Earth and Space Science Fellowship and a PCCRC Graduate Fellowship. J.S.D. gratefully acknowledges support from NSF (DEB-0955771). This is publication 1637 of the PCCRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schuster.

Additional information

Responsible Editor: Melany Fisk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, M.J., Smith, N.G. & Dukes, J.S. Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics. Biogeochemistry 129, 389–400 (2016). https://doi.org/10.1007/s10533-016-0240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0240-6

Keywords

Navigation