, Volume 129, Issue 1–2, pp 165–180 | Cite as

Unprecedented decrease in deposition of nitrogen oxides over North America: the relative effects of emission controls and prevailing air-mass trajectories

  • Javier LloretEmail author
  • Ivan Valiela


As one of the main forms of reactive nitrogen delivered by anthropogenic sources, atmospheric emissions of nitrogen oxides and their subsequent deposition has significantly perturbed the natural nitrogen cycle in sensitive receiving ecosystems worldwide. In North America, despite of decades of increasingly stringent regulations of emissions, decreases in the deposition of nitrogen oxides were not observed until the turn of the century. Analysis of available deposition data and trends at various spatial scales revealed that the decrease took place at a continental scale, but is particularly evident in the eastern side of the continent, where there was an unprecedented 50 % decrease in deposition. The magnitude, timing and geographical extension of the observed changes in deposition resulted from a combination of successfully and relatively coordinated application of emission controls in major contributing regions and increasingly lower amounts of nitrogen oxides being transported from source to receptor areas, thereby extending the effects of emission controls over large geographical scales.


Nitrogen oxides Emission controls Nitrogen deposition North America Trend analysis 



The authors gratefully acknowledge the US National Atmospheric Deposition Program, the Clean Air Status and Trends Network, and USEPA National Emissions Inventory; and the Canadian National Pollutant Release Inventory and National Atmospheric Chemistry (NAtChem) Database and its data contributing agencies for the provision of data used in this publication.

This work was supported by a Woods Hole Oceanographic Institution Sea Grant, NOAA grant no. NA14OAR4170074. J. Lloret was supported by a Rosenthal Post-Doctoral Fellowship Award from the Marine Biological Laboratory, and by a fellowship from the Northeast Climate Science Center.


  1. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386. doi: 10.2307/1311067 CrossRefGoogle Scholar
  2. Aber J, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934. doi: 10.2307/1313296 CrossRefGoogle Scholar
  3. Anderson N, Strader R, Davidson C (2003) Airborne reduced nitrogen: ammonia emissions from agriculture and other sources. Environ Int 29:277–286. doi: 10.1016/S0160-4120(02)00186-1 CrossRefGoogle Scholar
  4. Baker AR, Jickells TD, Biswas KF et al (2006) Nutrients in atmospheric aerosol particles along the Atlantic Meridional Transect. Deep Sea Res Part II Top Stud Oceanogr 53:1706–1719. doi: 10.1016/j.dsr2.2006.05.012 CrossRefGoogle Scholar
  5. Battye R, Battye W, Overcash C, Fudge S (1994) Development and Selection of Ammonia Emission Factors EPA/600/R-94/190. Final report prepared for United States Environmental Protection Agency, Office of Research and Development. USEPA Contract No. 68-D3-0034, Work Assignment 0–3Google Scholar
  6. Baumgardner RE, Lavery TF, Rogers CM, Isil SS (2002) Estimates of the atmospheric deposition of sulfur and nitrogen species: clean Air Status and Trends Network, 1990–2000. Environ Sci Technol 36:2614–2629. doi: 10.1021/es011146g CrossRefGoogle Scholar
  7. Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi: 10.1890/08-1140.1 CrossRefGoogle Scholar
  8. Butler TJ, Likens GE, Stunder BJ (2001) Regional-scale impacts of Phase I of the Clean Air Act Amendments in the USA: the relation between emissions and concentrations, both wet and dry. Atmos Environ 35:1015–1028. doi: 10.1016/S1352-2310(00)00386-1 CrossRefGoogle Scholar
  9. Butler TJ, Likens GE, Vermeylen FM, Stunder BJ (2003) The relation between NOx emissions and precipitation NO3− in the eastern USA. Atmos Environ 37:2093–2104. doi: 10.1016/S1352-2310(03)00103-1 CrossRefGoogle Scholar
  10. Cohen AJ, Ross Anderson H, Ostro B et al (2006) The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A 68:1301–1307. doi: 10.1080/15287390590936166 CrossRefGoogle Scholar
  11. Comrie AC (1994) Tracking ozone: air-mass trajectories and pollutant source regions influencing ozone in Pennsylvania forests. Ann Assoc Am Geogr 84:635–651. doi: 10.1111/j.1467-8306.1994.tb01880.x CrossRefGoogle Scholar
  12. Dallmann TR, Harley RA (2010) Evaluation of mobile source emission trends in the United States. J Geophys Res 115:D14305. doi: 10.1029/2010JD013862 CrossRefGoogle Scholar
  13. Dentener F, Drevet J, Lamarque JF et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycles 20:1–21. doi: 10.1029/2005GB002672 CrossRefGoogle Scholar
  14. Duce RA, LaRoche J, Altieri K et al (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897. doi: 10.1126/science.1150369 CrossRefGoogle Scholar
  15. Erisman JW, de Vries W (2000) Nitrogen deposition and effects on European forests. Environ Rev 8:65–93. doi: 10.1139/er-8-2-65 CrossRefGoogle Scholar
  16. Eshleman KN, Sabo RD, Kline KM (2013) Surface water quality is improving due to declining atmospheric N deposition. Environ Sci Technol 47:12193–12200. doi: 10.1021/es4028748 CrossRefGoogle Scholar
  17. Fairweather PG (1991) Statistical power and design requirements for environmental monitoring. Aust J Mar Freshw Res 42:555–567. doi: 10.1071/MF9910555 CrossRefGoogle Scholar
  18. Fenn ME, Haeuber R, Tonnesen GS et al (2003) Nitrogen emissions, deposition, and monitoring in the western United States. Bioscience 53:391. doi: 10.1641/0006-3568(2003)053[0391:NEDAMI]2.0.CO;2 CrossRefGoogle Scholar
  19. Fowler D, Smith R, Muller J et al (2007) Long term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities. Water Air Soil Pollut Focus 7:41–47. doi: 10.1007/s11267-006-9102-x CrossRefGoogle Scholar
  20. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett. doi: 10.1029/2012GL051000 Google Scholar
  21. Galloway JN, Aber JD, Erisman JW et al (2003) The nitrogen cascade. Bioscience 53:341–356. doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 CrossRefGoogle Scholar
  22. Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  23. Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science (80-) 320:889–892. doi: 10.1126/science.1136674 CrossRefGoogle Scholar
  24. Geddes JA, Murphy JG, Wang DK (2009) Long term changes in nitrogen oxides and volatile organic compounds in Toronto and the challenges facing local ozone control. Atmos Environ 43:3407–3415. doi: 10.1016/j.atmosenv.2009.03.053 CrossRefGoogle Scholar
  25. Godowitch JM, Pouliot GA, Trivikrama Rao S (2010) Assessing multi-year changes in modeled and observed urban NOX concentrations from a dynamic model evaluation perspective. Atmos Environ 44:2894–2901. doi: 10.1016/j.atmosenv.2010.04.040 CrossRefGoogle Scholar
  26. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296. doi: 10.1038/nature06592 CrossRefGoogle Scholar
  27. Hertel O, Ambelas Skjøth C, Frohn LM et al (2002) Assessment of the atmospheric nitrogen and sulphur inputs into the North Sea using a Lagrangian model. Phys Chem Earth A/B/C 27:1507–1515. doi: 10.1016/S1474-7065(02)00153-5 CrossRefGoogle Scholar
  28. Hettelingh JP, De Vries W, Posch M et al (2014) Nitrogen deposition, critical loads and biodiversity. Springer, NetherlandsGoogle Scholar
  29. Howarth R, Boyer E, Pabich W, Galloway JN (2002) Nitrogen use in the United States from 1961–2000 and potential future trends. AMBIO 31:88–96CrossRefGoogle Scholar
  30. Jaiser R, Dethloff K, Handorf D et al (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A. doi: 10.3402/tellusa.v64i0.11595 Google Scholar
  31. Jaworski NA, Howarth RW, Hetling LJ (1997) Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the Northeast United States. Environ Sci Technol 31:1995–2004. doi: 10.1021/es960803f CrossRefGoogle Scholar
  32. Jia Y, Yu G, Gao Y et al (2016) Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements. Sci Rep 6:19810. doi: 10.1038/srep19810 CrossRefGoogle Scholar
  33. Lajtha K, Jones J (2013) Trends in cation, nitrogen, sulfate and hydrogen ion concentrations in precipitation in the United States and Europe from 1978 to 2010: a new look at an old problem. Biogeochemistry 116:303–334. doi: 10.1007/s10533-013-9860-2 CrossRefGoogle Scholar
  34. Lelieveld J, Evans JS, Fnais M et al (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371. doi: 10.1038/nature15371 CrossRefGoogle Scholar
  35. Megaritis AG, Murphy BN, Racherla PN et al (2014) Impact of climate change on mercury concentrations and deposition in the eastern United States. Sci Total Environ 487:299–312. doi: 10.1016/j.scitotenv.2014.03.084 CrossRefGoogle Scholar
  36. Monks PS, Granier C, Fuzzi S et al (2009) Atmospheric composition change—global and regional air quality. Atmos Environ 43:5268–5350CrossRefGoogle Scholar
  37. National Research Council (1986) Acid deposition: long-term trends. National Academies Press, Washington, DCGoogle Scholar
  38. Olivier JGJ, Bouwman AF, Berdowski JJM et al (1999) Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1° × 1°. Environ Sci Policy 2:241–263. doi: 10.1016/S1462-9011(99)00027-1 CrossRefGoogle Scholar
  39. Overland JE, Francis JA, Hanna E, Wang M (2012) The recent shift in early summer Arctic atmospheric circulation. Geophys Res Lett. doi: 10.1029/2012GL053268 Google Scholar
  40. Paerl HW (1995) Coastal eutrophication in relation to atmospheric nitrogen deposition: current perspectives. Ophelia 41:237–259. doi: 10.1080/00785236.1995.10422046 CrossRefGoogle Scholar
  41. Paerl H, Dennis R, Whitall D (2002) Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries 25:677–693. doi: 10.1007/BF02804899 CrossRefGoogle Scholar
  42. Pardo LH, Fenn ME, Goodale CL et al (2011) Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl 21:3049–3082. doi: 10.1890/10-2341.1 CrossRefGoogle Scholar
  43. Phoenix GK, Hicks WK, Cinderby S et al (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476. doi: 10.1111/j.1365-2486.2006.01104.x CrossRefGoogle Scholar
  44. Pinder RW, Appel KW, Dennis RL (2011) Trends in atmospheric reactive nitrogen for the Eastern United States. Environ Pollut 159:3138–3141. doi: 10.1016/j.envpol.2011.04.042 CrossRefGoogle Scholar
  45. Prospero JM, Arimoto R (2009) Atmospheric transport and deposition of particulate material to the oceans. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of ocean sciences. Elsevier, Amsterdam, pp 248–257Google Scholar
  46. Puntsag T, Mitchell MJ, Campbell JL et al (2016) Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US. Sci Rep 6:22647. doi: 10.1038/srep22647 CrossRefGoogle Scholar
  47. Rao LE, Allen EB (2010) Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia 162:1035–1046. doi: 10.1007/s00442-009-1516-5 CrossRefGoogle Scholar
  48. Reis S, Pinder RW, Zhang M et al (2009) Reactive nitrogen in atmospheric emission inventories. Atmos Chem Phys 9:7657–7677. doi: 10.5194/acp-9-7657-2009 CrossRefGoogle Scholar
  49. Schwede DB, Lear GG (2014) A novel hybrid approach for estimating total deposition in the United States. Atmos Environ 92:207–220. doi: 10.1016/j.atmosenv.2014.04.008 CrossRefGoogle Scholar
  50. Selin NE, Jacob DJ (2008) Seasonal and spatial patterns of mercury wet deposition in the United States: constraints on the contribution from North American anthropogenic sources. Atmos Environ 42:5193–5204. doi: 10.1016/j.atmosenv.2008.02.069 CrossRefGoogle Scholar
  51. Simkin SM, Allen EB, Bowman WD et al (2016) Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc Natl Acad Sci 113:4086–4091. doi: 10.1073/pnas.1515241113 CrossRefGoogle Scholar
  52. Sjostrom DJ, Welker JM (2009) The influence of air mass source on the seasonal isotopic composition of precipitation, eastern USA. J Geochem Explor 102:103–112. doi: 10.1016/j.gexplo.2009.03.001 CrossRefGoogle Scholar
  53. Stine AR, Huybers P (2012) Changes in the seasonal cycle of temperature and atmospheric circulation. J Clim 25:7362–7380. doi: 10.1175/JCLI-D-11-00470.1 CrossRefGoogle Scholar
  54. Strock KE, Nelson SJ, Kahl JS et al (2014) Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern U.S. Environ Sci Technol 48:4681–4689. doi: 10.1021/es404772n CrossRefGoogle Scholar
  55. Vet R, Ro C-U (2008) Contribution of Canada-United States transboundary transport to wet deposition of sulphur and nitrogen oxides—a mass balance approach. Atmos Environ 42:2518–2529. doi: 10.1016/j.atmosenv.2007.12.034 CrossRefGoogle Scholar
  56. Vet R, Artz RS, Carou S et al (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100. doi: 10.1016/j.atmosenv.2013.10.060 CrossRefGoogle Scholar
  57. Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: Sources and consequences. Ecol Appl 7:737–750. doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 Google Scholar
  58. Zhang L, Jacob DJ, Knipping EM et al (2012) Nitrogen deposition to the United States: distribution, sources, and processes. Atmos Chem Phys 12:4539–4554. doi: 10.5194/acp-12-4539-2012 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA

Personalised recommendations