Skip to main content
Log in

A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

How climatic factors influence the balance of sulfur (S) with carbon (C) and nitrogen (N) in soils is not well understood. Here we report the results of S, C and N concentrations in 550 soil samples along a 3500-km aridity gradient across arid and semi-arid grasslands in northern China. Our results showed that soil available S (AS) concentrations decreased with increasing aridity index (AI, calculated as ‘1—the ratio of mean annual precipitation to potential evapotranspiration’) when AI < 0.91 (90–450 mm rainfall year−1), but increased when AI > 0.91 (30–90 mm rainfall year−1), having a threshold at AI = 0.91 (90 mm rainfall year−1). Soil AS concentrations were positively related to soil organic C (OC), soil total N (TN), microbial biomass C and N concentrations, and arylsulphatase activities when AI < 0.91, but were not positively related to these variables when AI > 0.91. Topsoil AS:OC and AS:TN ratios mainly depended on OC and TN concentrations when AI < 0.91, but mainly depended on AS concentrations when AI > 0.91. The decreased (AI < 0.91) and increased total S concentrations (AI > 0.91) with increasing AI along the gradient provided further evidence for the existence of this fundamental threshold. High concentrations of sulfate in drier soils were associated with long-term atmosphere inputs and groundwater-derived salts with minimal leaching rates. Overall, our findings imply that aridity asymmetrically controls the relationships of soil AS with OC and TN on the two sides of the threshold, i.e. biological processes exerted stronger controls in wetter sites, while geochemical processes played more significant roles in drier sites. These results should be incorporated into predictive models of global biogeochemical cycling under various global climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acquisti C, Elser JJ, Kumar S (2009) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26(5):953–956

    Article  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231(2):243–254

    Article  Google Scholar 

  • Jaggi RC, Aulakh MS, Sharma R (1999) Temperature effects on soil organic sulphur mineralization and elemental sulphur oxidation in subtropical soils of varying pH. Nutr Cycl Agroecosyst 54(2):175–182

    Article  Google Scholar 

  • Austin AT, Vitousek P (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113(4):519–529

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141(2):221–235

    Article  Google Scholar 

  • Bailey JS, Deng Y, Smith RV (2001) Changes in soil organic carbon storage under grassland as evidenced by changes in sulphur input-output budgets. Chemosphere 42(2):141–151

    Article  Google Scholar 

  • Bao H, Marchant DR (2006) Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. J Geophys Res Atmos 111:D16301

    Article  Google Scholar 

  • Bettany J, Stewart J, Halstead E (1973) Sulfur fractions and carbon, nitrogen, and sulfur relationships in grassland, forest, and associated transitional soils. Soil Sci Soc Am J 37(6):915–918

    Article  Google Scholar 

  • Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1(11):767–770

    Article  Google Scholar 

  • Bragg JG, Thomas D, Baudouin-Cornu P (2006) Variation among species in proteomic sulphur content is related to environmental conditions. Proc R Soc B 273(1591):1293–1300

    Article  Google Scholar 

  • Burgin AJ, Yang WH, Hamilton SK, Silver WL (2011) Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ 9(1):44–52

    Article  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  Google Scholar 

  • Cregut M, Piutti S, Slezack-Deschaumes S, Benizri E (2013) Compartmentalization and regulation of arylsulfatase activities in Streptomyces sp., Microbacterium sp. and Rhodococcus sp. soil isolates in response to inorganic sulfate limitation. Microbiol Res 168(1):12–21

    Article  Google Scholar 

  • Dai AG (2011) Drought under global warming: a review. Wiley Interdiscip Rev 2(1):45–65

    Google Scholar 

  • Dai AG (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52–58

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502(7473):672–676

    Article  Google Scholar 

  • Dick RP, Burns RG (2011) A brief history of soil enzymology research. Methods in soil enzymology, Soil Science Society of America, Madison, pp 1–34

  • Elamin EA, Hussein AH (2000) Cooper adsorption as affected by electrolyte concentration and sodium adsorption ratio in three major soil series in Sudan. Ann Arid Zone 39(2):137–143

    Google Scholar 

  • Elser JJ, Acquisti C, Kumar S (2011) Stoichiogenomics: the evolutionary ecology of macromolecular elemental composition. Trends Ecol Evol 26(1):38–44

    Article  Google Scholar 

  • Ewing SA, Sutter B, Owen J, Nishiizumi K, Sharp W, Cliff SS, Perry K, Dietrich W, McKay CP, Amundson R (2006) A threshold in soil formation at Earth’s arid-hyperarid transition. Geochim Et Cosmochim Acta 70(21):5293–5322

    Article  Google Scholar 

  • Ewing SA, Yang W, DePaolo DJ, Michalski G, Kendall C, Stewart BW, Thiemens M, Amundson R (2008) Non-biological fractionation of stable Ca isotopes in soils of the Atacama Desert, Chile. Geochimica Et Cosmochimica Acta 72(4):1096–1110

    Article  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  Google Scholar 

  • Giweta M, Dyck MF, Malhi SS, Puurveen D, Robertson JA (2014) Long-term S-fertilization increases carbon sequestration in a sulfur-deficient soil. Can J Soil Sci 94(3):295–301

    Article  Google Scholar 

  • Harris D, Horwáth WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65(6):1853–1856

    Article  Google Scholar 

  • Hell R, Khan MS, Wirtz M (2010) Cellular biology of sulfur and its functions in plants. In: Cell biology of metals and nutrients. Springer, Berlin, pp 243–279

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6(S1):196–210

    Article  Google Scholar 

  • Hunt HW, Stewart JWB, Cole CV (1986) Concepts of sulfur, carbon, and nitrogen transformations in soil: evaluation by simulation modeling. Biogeochemistry 2(2):163–177

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis working group I contribution to the IPCC 5th assessment report-changes to the underlying scientific/technical assessment IPCC, Cambridge, United Kingdom and New York, NY, USA

  • Jamal A, Moon YS, Abdin MZ (2010) Sulphur-a general overview and interaction with nitrogen. Aust J Crop Sci 4(7):523–529

    Google Scholar 

  • Kang L, Han X, Zhang Z, Sun OJ (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Philos Trans R Soc B 362(1482):997–1008

    Article  Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55(404):1939–1945

    Article  Google Scholar 

  • Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P: S ratios in Australian and other world soils. Geoderma 163(3–4):197–208

    Article  Google Scholar 

  • Klose S, Moore JM, Tabatabai MA (1999) Arylsulfatase activity of microbial biomass in soils as affected by cropping systems. Biol Fertil Soils 29(1):46–54

    Article  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58(9):811–821

    Article  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Mitchell MJ, Lovett GM, Bailey SW, Siccama TG, Reiners WA, Alewell C (2002) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60(3):235–316

    Article  Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P (2013) Enhanced nitrogen deposition over China. Nature 494(7438):459–462

    Article  Google Scholar 

  • Luo W, Jiang Y, Lü X, Wang X, Li MH, Bai E, Han X, Xu Z (2013) Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China. PLoS One 8(8):e71749

    Article  Google Scholar 

  • Luo W, Elser JJ, Lü XT, Wang Z, Bai E, Yan C, Wang C, Li MH, Zimmermann NE, Han X, Jiang Y (2015a) Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochem Cycles 29:1298–1308

    Article  Google Scholar 

  • Luo WT, Nelson PN, Li MH, Cai JP, Zhang YY, Shan Y, Wang RZ, Wang ZW, Wu YN, Han XG, Jiang Y (2015b) Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. Biogeosciences 12:7074–7056

    Google Scholar 

  • MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci Soc Am J 59(1):233–240

    Article  Google Scholar 

  • Malhi SS, Gill KS (2007) Interactive effects of N and S fertilizers on canola yield and seed quality on S-deficient Gray Luvisol soils in northeastern Saskatchewan. Can J Plant Sci 87(2):211–222

    Article  Google Scholar 

  • Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33(12):1633–1640

    Article  Google Scholar 

  • Maynard DG, Stewart JWB, Bettany JR (1984) Sulfur cycling in grassland and parkland soils. Biogeochemistry 1(1):97–111

    Article  Google Scholar 

  • McFadden LD (2013) Strongly dust-influenced soils and what they tell us about landscape dynamics in vegetated aridlands of the southwestern United States. In: Bickford ME (ed) The web of geological sciences: advances, impacts, and interactions. Geological Society of America Special Paper: Boulder, Colorado, USA, vol 500, pp 1–32

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4):267–286

    Article  Google Scholar 

  • McNeill AM, Eriksen J, Bergström L, Smith KA, Marstorp H, Kirchmann H, Nilsson I (2005) Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems. Soil Use Manag 21(1):82–93

    Article  Google Scholar 

  • Michalski G, Böhlke JK, Thiemens M (2004) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim Et Cosmochim Acta 68(20):4023–4038

    Article  Google Scholar 

  • Mohamed GG, Awadalla SY, Zayed MA (2002) Nutrients availability as related to heat capacity and other desert soil conditions. Egypt J Soil Sci (Egypt) 42:659–672

    Google Scholar 

  • Moon V, Jayawardane J (2004) Geomechanical and geochemical changes during early stages of weathering of Karamu Basalt, New Zealand. Eng Geol 74(1):57–72

    Article  Google Scholar 

  • Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Glob Change Biol 8(9):872–884

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18(1):3–6

    Article  Google Scholar 

  • Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17(1):82–91

    Article  Google Scholar 

  • Rech JA, Quade J, Hart WS (2003) Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochimica Et Cosmochimica Acta 67(4):575–586

    Article  Google Scholar 

  • Reheis MC, Budahn JR, Lamothe PJ, Reynolds RL (2009) Compositions of modern dust and surface sediments in the Desert Southwest, United States. J Geophys Res 114:F01028

    Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EF, Turner BL , Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE (2007) Global desertification: building a science for dryland development. Science 316(5826):847–851

    Article  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461(7260):53–59

    Article  Google Scholar 

  • Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH (2012) Anticipating critical transitions. Science 338(6105):344–348

    Article  Google Scholar 

  • Schimel DS (2010) Drylands in the earth system. Science 327(5964):418–419

    Article  Google Scholar 

  • Tabatabai MA, Al-Khafaji AA (1980) Comparison of nitrogen and sulfur mineralization in soils. Soil Sci Soc Am J 44(5):1000–1006

    Article  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  Google Scholar 

  • Tandon HLS (2005) Methods of analysis of soils, plants, waters and fertilisers. Fertilizer Development and Consultation Organization, New Delhi

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton

    Google Scholar 

  • Vitousek PM, Chadwick OA (2013) Pedogenic thresholds and soil process domains in basalt-derived soils. Ecosystems 16(8):1379–1395

    Article  Google Scholar 

  • Wang C, Wang X, Liu D, Wu H, Lü X, Fang Y, Cheng W, Luo W, Jiang P, Shi J, Yin H, Zhou J, Han X, Bai E (2014) Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat Commun 5:4799

    Article  Google Scholar 

  • Wardle DA (2013) Ecology: drivers of decoupling in drylands. Nature 502(7473):628–629

    Article  Google Scholar 

  • West NE (1991) Nutrient cycling in soils of semiarid and arid regions. In: Skujins J (ed) Semiarid lands and deserts: soil resource and reclamation. Marcel Dekker, New York, pp 295–332

    Google Scholar 

  • Whitehead DC (2000) Nutrient elements in grassland. Soil-plant-animal relationships. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Yang Y, Ji C, Ma W, Wang S, Wang S, Han W, Mohammat A, Robinson D, Smith P (2012) Significant soil acidification across northern China’s grasslands during 1980s-2000s. Glob Change Biol 18(7):2292–2300

    Article  Google Scholar 

  • Yi-Balan SA, Amundson R, Buss HL (2014) Decoupling of sulfur and nitrogen cycling due to biotic processes in a tropical rainforest. Geochim Et Cosmochim Acta 142(1):411–428

    Article  Google Scholar 

  • Zeng H, Wang G, Hu X, Wang H, Du L, Zhu Y (2014) Role of microRNAs in plant responses to nutrient stress. Plant Soil 374(1–2):1005–1021

    Article  Google Scholar 

Download references

Acknowledgments

William H. Schlesinger is gratefully acknowledged for his comments and suggestions. We thank all members of the Field Expedition Team from the Institute of Applied Ecology, Chinese Academy of Sciences for assistance with field data collection. This work was financially supported by the National Natural Science Foundation of China (41371251), National Basic Research Program of China (2011CB403204), and State Key Laboratory of Forest and Soil Ecology (LFSE2013-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Additional information

Responsible Editor: Asmeret Asefaw Berhe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Dijkstra, F.A., Bai, E. et al. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry 127, 141–153 (2016). https://doi.org/10.1007/s10533-015-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0174-4

Keywords

Navigation