Advertisement

Biogeochemistry

, Volume 125, Issue 3, pp 409–426 | Cite as

Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought

  • Lluís Gómez-Gener
  • Biel Obrador
  • Daniel von Schiller
  • Rafael Marcé
  • Joan Pere Casas-Ruiz
  • Lorenzo Proia
  • Vicenç Acuña
  • Núria Catalán
  • Isabel Muñoz
  • Matthias Koschorreck
Article

Abstract

During summer drought, Mediterranean fluvial networks are transformed into highly heterogeneous landscapes characterized by different environments (i.e., running and impounded waters, isolated river pools and dry beds). This hydrological setting defines novel biogeochemically active areas that could potentially increase the rates of carbon emissions from the fluvial network to the atmosphere. Using chamber methods, we aimed to identify hot spots for carbon dioxide (CO2) and methane (CH4) emissions from two typical Mediterranean fluvial networks during summer drought. The CO2 efflux from dry beds (mean ± SE = 209 ± 10 mmol CO2 m−2 d−1) was comparable to that from running waters (120 ± 33 mmol m−2 d−1) and significantly higher than from impounded waters (36.6 ± 8.5 mmol m−2 d−1) and isolated pools (17.2 ± 0.9 mmol m−2 d−1). In contrast, the CH4 efflux did not significantly differ among environments, although the CH4 efflux was notable in some impounded waters (13.9 ± 10.1 mmol CH4 m−2 d−1) and almost negligible in the remaining environments (mean <0.3 mmol m−2 d−1). Diffusion was the only mechanism driving CO2 efflux in all environments and was most likely responsible for CH4 efflux in running waters, isolated pools and dry beds. In contrast, the CH4 efflux in impounded waters was primarily ebullition-based. Using a simple heuristic approach to simulate potential changes in carbon emissions from Mediterranean fluvial networks under future hydrological scenarios, we show that an extreme drying out (i.e., a four-fold increase of the surface area of dry beds) would double the CO2 efflux from the fluvial network. Correspondingly, an extreme transformation of running waters into impounded waters (i.e., a twofold increase of the surface area of impounded waters) would triple the CH4 efflux. Thus, carbon emissions from dry beds and impounded waters should be explicitly considered in carbon assessments of fluvial networks, particularly under predicted global change scenarios, which are expected to increase the spatial and temporal extent of these environments.

Keywords

Greenhouse gas fluxes Carbon dioxide Methane Fluvial network Temporary rivers Summer drought 

Notes

Acknowledgments

All the data used for the results of this paper is available upon request to the corresponding author. We thank P. A. Raymond for providing data of the effective area occupied by dry rivers in our COSCAT region. This research was funded by the Spanish Ministry of Economy and Competitiveness through the projects CGL2011-30474-C02-01 and CGL2014-58760-C3-1-R. Ll. Gómez-Gener and J. P. Casas-Ruiz were additionally supported by FPI predoctoral grants (BES-2012-059743 and BES-2012-059655) and D. von Schiller by a “Juan de la Cierva” postdoctoral grant (JCI-2010-06397). We thank Carmen Gutiérrez, Mertixell Abril and Susanne Halbedel, for the lab and field assistance. We also thank the Scientific and Technical Service Department of the Catalan Institute for Water research (ICRA) for the lab assistance.

Supplementary material

10533_2015_139_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1289 kb)

References

  1. Abril G (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:1–16. doi: 10.1029/2005GB002457 CrossRefGoogle Scholar
  2. Acuña V, Tockner K (2010) The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Global Chang Biol 16:2638–2650. doi: 10.1111/j.1365-2486.2010.02170.x Google Scholar
  3. Acuña V, Datry T, Marshall J et al (2014) Why should we care about temporary waterways? Science 343:1080–1082. doi: 10.1126/science.1246666 CrossRefGoogle Scholar
  4. Alin SR, Rasera MDFFL, Salimon CI et al (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res 116:G01009. doi: 10.1029/2010JG001398 Google Scholar
  5. Angert A, Yakir D, Rodeghiero M et al (2014) Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosciences Discuss 11:12039–12068. doi: 10.5194/bgd-11-12039-2014 CrossRefGoogle Scholar
  6. Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558. doi: 10.1038/nature05038 CrossRefGoogle Scholar
  7. Bade DL (2009) Gas exchange across the air-water interface. In: Gene EL (ed) Encyclopedia of inland waters. Academic Press, Oxford, pp 70–78CrossRefGoogle Scholar
  8. Bastien J, Demarty M (2013) Spatio-temporal variation of gross CO2 and CH4 diffusive emissions from Australian reservoirs and natural aquatic ecosystems, and estimation of net reservoir emissions. Lakes Reserv Res Manag 18:115–127. doi: 10.1111/lre.12028 CrossRefGoogle Scholar
  9. Bastviken D, Cole J, Pace M, Tranvik LJ (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:1–12. doi: 10.1029/2004GB002238 CrossRefGoogle Scholar
  10. Bastviken D, Tranvik LJ, Downing JA et al (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50–57. doi: 10.1126/science.1196808 CrossRefGoogle Scholar
  11. Battin TJ, Luyssaert S, Kaplan LA et al (2009a) The boundless carbon cycle. Nat Geosci 2:598–600. doi: 10.1038/ngeo618 CrossRefGoogle Scholar
  12. Battin TJ, Kaplan LA, Findlay S et al (2009b) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 2:95–100. doi: 10.1038/ngeo602 CrossRefGoogle Scholar
  13. Baulch HM, Dillon PJ, Maranger R, Schiff SL (2011) Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res Biogeosciences 116:1–15. doi: 10.1029/2011JG001656 CrossRefGoogle Scholar
  14. Beaulieu JJ, Shuster WD, Rebholz JA (2012) Controls on gas transfer velocities in a large river. J Geophys Res Biogeosciences 117:1–13. doi: 10.1029/2011JG001794 CrossRefGoogle Scholar
  15. Belger L, Forsberg BR, Melack JM (2010) Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil. Biogeochemistry 105:171–183. doi: 10.1007/s10533-010-9536-0 CrossRefGoogle Scholar
  16. Benstead JP, Leigh DS (2012) An expanded role for river networks. Nat Geosci 5:678–679. doi: 10.1038/ngeo1593 CrossRefGoogle Scholar
  17. Bernal S, von Schiller D, Sabater F, Martí E (2013) Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia 719:31–42. doi: 10.1007/s10750-012-1246-2 CrossRefGoogle Scholar
  18. Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719:1–29. doi: 10.1007/s10750-013-1634-2 CrossRefGoogle Scholar
  19. Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7:1915–1926. doi: 10.5194/bg-7-1915-2010 CrossRefGoogle Scholar
  20. Campbell C, Chapman S (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial. Appl Environ Microbiol 69:3593–3599. doi: 10.1128/AEM.69.6.3593 CrossRefGoogle Scholar
  21. Campeau A, Del Giorgio PA (2014) Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Chang Biol 20:1–14. doi: 10.1111/gcb.12479 CrossRefGoogle Scholar
  22. Campeau A, Lapierre J (2014) Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Glob Biogeochem Cycles 28:1–13. doi: 10.1002/2013GB004685 CrossRefGoogle Scholar
  23. Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  24. Cole JJ, Bade DL, Bastviken D et al (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr Methods 8:285–293. doi: 10.4319/lom.2010.8.285 CrossRefGoogle Scholar
  25. Crawford JT, Stanley EH, Spawn SA et al (2014) Ebullitive methane emissions from oxygenated wetland streams. Global Chang Biol 20:3408–3422. doi: 10.1111/gcb.12614 CrossRefGoogle Scholar
  26. Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017. doi: 10.4319/lo.2003.48.3.1010 CrossRefGoogle Scholar
  27. Dahm CN, Baker MA, Moore DI, Thibault JR (2003) Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshw Biol 48:1219–1231. doi: 10.1046/j.1365-2427.2003.01082.x CrossRefGoogle Scholar
  28. Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235. doi: 10.1093/biosci/bit027 CrossRefGoogle Scholar
  29. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other method. J Sediment Petrol 44:242–248. doi: 10.1306/74D729D2-2B21-11D7-8648000102C1865D Google Scholar
  30. Del Sontro T (2011) Quantifying methane emissions from reservoirs: from Basin-scale to discrete analyses with a focus on ebullition dynamics. PhD dissertation, Eidgenössische Technische Hochschule ETH Zürich, Zürich. doi: http://dx.doi.org/10.3929/ethz-a-006725547
  31. Del Sontro T, McGinnis DF, Sobek S et al (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425. doi: 10.1021/es9031369 CrossRefGoogle Scholar
  32. Demars BOL, Manson JR (2013) Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review. Water Res 47:1–15. doi: 10.1016/j.watres.2012.09.054 CrossRefGoogle Scholar
  33. Donelan MA (1990) Air–sea interaction. In: LeMehaute B, Hanes D (eds) The sea: ocean engineering science. Wiley, New York, pp 239–292Google Scholar
  34. Downing JA, Cole JJ, Middelburg JJ et al (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycles 22:GB1018. doi: 10.1029/2006GB002854 CrossRefGoogle Scholar
  35. Fearnside PM, Pueyo S (2012) Greenhouse-gas emissions from tropical dams. Nat Clim Chang 2:382–384. doi: 10.1038/nclimate1540 CrossRefGoogle Scholar
  36. Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462. doi: 10.4319/lo.2010.55.6.2452 CrossRefGoogle Scholar
  37. Forzieri G, Feyen L, Rojas R et al (2014) Ensemble projections of future streamflow droughts in Europe. Hydrol Earth Syst Sci 18:85–108. doi: 10.5194/hess-18-85-2014 CrossRefGoogle Scholar
  38. Frankignoulle M (1988) Field measurements of air-sea CO2 exchange. Limnol Ocean 33:313–322CrossRefGoogle Scholar
  39. Fujikawa T, Miyazaki T (2005) Effects of bulk density and soil type on the gas diffusion coefficient in repacked and undisturbed soils. Soil Sci 170:892–901. doi: 10.1097/01.ss.0000196771.53574.79 CrossRefGoogle Scholar
  40. Gallo EL, Lohse KA, Ferlin CM et al (2014) Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121:189–207. doi: 10.1007/s10533-013-9927-0 CrossRefGoogle Scholar
  41. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM et al (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105:121–139. doi: 10.1016/j.earscirev.2011.01.006 CrossRefGoogle Scholar
  42. Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. doi: 10.1146/annurev.ecolsys.30.1.51 CrossRefGoogle Scholar
  43. Guérin F, Abril G, Serça D et al (2007) Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Mar Syst 66:161–172. doi: 10.1016/j.jmarsys.2006.03.019 CrossRefGoogle Scholar
  44. Halbedel S, Koschorreck M (2013) Regulation of CO2 emissions from temperate streams and reservoirs. Biogeosciences 10:7539–7551. doi: 10.5194/bg-10-7539-2013 CrossRefGoogle Scholar
  45. Hope D, Palmer SM, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857. doi: 10.4319/lo.2001.46.4.0847 CrossRefGoogle Scholar
  46. Hornberger GM, Kelly MG (1975) Atmospheric reaeration in a river using productivity analysis. J Environ Eng Div ASCE 101:729–739Google Scholar
  47. Howard D, Howard P (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546. doi: 10.1016/0038-0717(93)90008-Y CrossRefGoogle Scholar
  48. IPCC 2013: Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on climate change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge and New York, 1535 ppGoogle Scholar
  49. Jähne B, Münnich K (1987) On the parameters influencing air-water gas exchange. J Geophys Res Ocean 92:1937–1942. doi: 10.1029/JC092iC02p01937 CrossRefGoogle Scholar
  50. Jonsson A, Algesten G, Bergström AK et al (2007) Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334:141–150. doi: 10.1016/j.jhydrol.2006.10.003 CrossRefGoogle Scholar
  51. Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251(4991):298–301. doi: 10.1126/science.251.4991.298 CrossRefGoogle Scholar
  52. Koschorreck M, Darwich A (2003) Nitrogen dynamics in seasonally flooded soils in the Amazon floodplain. Wetl Ecol Manag 11:317–330. doi: 10.1023/B:WETL.0000005536.39074.72 CrossRefGoogle Scholar
  53. Lake PS (2011) Drought and aquatic ecosystems: effects and responses. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  54. Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738. doi: 10.1111/j.1365-2427.2009.02322.x CrossRefGoogle Scholar
  55. Laurion I, Vincent W, MacIntyre S (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133. doi: 10.4319/lo.2010.55.1.0115 CrossRefGoogle Scholar
  56. López P, Marcé R, Armengol J (2011) Net heterotrophy and CO2 evasion from a productive calcareous reservoir: adding complexity to the metabolism-CO2 evasion issue. J Geophys Res Biogeosciences 116:G02021. doi: 10.1029/2010JG001614 CrossRefGoogle Scholar
  57. Lundin EJ, Giesler R, Persson A et al (2013) Integrating carbon emissions from lakes and streams in a subarctic catchment. J Geophys Res Biogeosciences 118:1–8. doi: 10.1002/jgrg.20092 Google Scholar
  58. Luo Y, Zhou X (2010) Soil respiration and the environment. Elsevier Academy Press, AmsterdamGoogle Scholar
  59. Maeck A, Del Sontro T, McGinnis DF et al (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137. doi: 10.1021/es4003907 Google Scholar
  60. McGinnis DF, Kirillin G, Tang KW et al (2015) Enhancing surface methane fluxes from an Oligotrophic lake: exploring the microbubble hypothesis. Environ Sci Technol 49:873–880. doi: 10.1021/es503385d CrossRefGoogle Scholar
  61. McIntyre RES, Adams MA, Ford DJ, Grierson PF (2009) Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream. Soil Biol Biochem 41:92–101. doi: 10.1016/j.soilbio.2008.09.021 CrossRefGoogle Scholar
  62. Meier JA, Jewell JS, Brennen CE, Imberger J (2011) Bubbles emerging from a submerged granular bed. J Fluid Mech 666:189–203. doi: 10.1017/S002211201000443X CrossRefGoogle Scholar
  63. Meybeck M, Dürr H, Vörösmarty C (2006) Global coastal segmentation and its river catchment contributors: A new look at land-ocean linkage. Global Biogeochem Cycles 20:GB1S90. doi: 10.1029/2005GB002540 CrossRefGoogle Scholar
  64. Millero F (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677. doi: 10.1016/0016-7037(94)00354-O CrossRefGoogle Scholar
  65. Milliman JD, Farnsworth KL, Jones PD et al (2008) Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob Planet Chang 62:187–194. doi: 10.1016/j.gloplacha.2008.03.001 CrossRefGoogle Scholar
  66. Mitchell AM, Baldwin DS (1999) The effects of sediment desiccation on the potential for nitrification, denitrification, and methanogenesis in an Australian reservoir. Hydrobiologia 392:3–11. doi: 10.1023/A:1003589805914 CrossRefGoogle Scholar
  67. Morales-Pineda M, Cózar A, Laiz I et al (2014) Daily, biweekly, and seasonal temporal scales of pCO2 variability in two stratified Mediterranean reservoirs. J Geophys Res Biogeosciences 119:1–12. doi: 10.1002/2013JG002317 CrossRefGoogle Scholar
  68. Mulholland PJ, Elwood JW (1982) The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus A 34:490–499. doi: 10.3402/tellusa.v34i5.10834 CrossRefGoogle Scholar
  69. Nilsson C, Reidy C, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408. doi: 10.1126/science.1107887 CrossRefGoogle Scholar
  70. Obrador B, Pretus JL (2012) Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation. Hydrobiologia 699:35–57. doi: 10.1007/s10750-012-1152-7 CrossRefGoogle Scholar
  71. Oksanen, J, Blanchet FG, Kindt R et al. (2013). Vegan: community ecology package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan
  72. Pavón D (2010) Desarrollo y decadencia hidroeléctrica en los pequeños ríos del litoral mediterráneo catalán. El caso de las cuencas del Fluvià y de la Muga. Revista de Historia Industrial 42:43–87Google Scholar
  73. Pohlon E, Ochoa Fandino A, Marxsen J (2013) Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS One 8:e83365. doi: 10.1371/journal.pone.0083365 CrossRefGoogle Scholar
  74. Prairie Y, Del Giorgio PA (2013) A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inl Waters 3:311–320. doi: 10.5268/IW-3.3.542 CrossRefGoogle Scholar
  75. R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN:3-900051-07-0, http://www.R-project.org/
  76. Raich J, Schlesinger W (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99. doi: 10.1034/j.1600-0889.1992.t01-1-00001.x CrossRefGoogle Scholar
  77. Raich J, Potter C, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–94. Global Chang Biol 8:800–812. doi: 10.3334/CDIAC/lue.ndp081 CrossRefGoogle Scholar
  78. Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi: 10.1038/nature12760 CrossRefGoogle Scholar
  79. Rey A (2015) Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Chang Biol 21:1752–1761. doi: 10.1111/gcb.12821 CrossRefGoogle Scholar
  80. Sabater S (2008) Alterations of the global water cycle and their effects on river structure, function and services. Freshw Rev 1:75–88. doi: 10.1608/FRJ-1.1.5 CrossRefGoogle Scholar
  81. Sobek S, Algesten G (2003) The catchment and climate regulation of pCO2 in boreal lakes. Global Chang Biol 9:630–641. doi: 10.1046/j.1365-2486.2003.00619.x CrossRefGoogle Scholar
  82. Sobek S, Zurbrügg R, Ostrovsky I (2011) The burial efficiency of organic carbon in the sediments of Lake Kinneret. Aquat Sci 73:355–364. doi: 10.1007/s00027-011-0183-x CrossRefGoogle Scholar
  83. Sobek S, Del Sontro T, Wongfun N, Wehrli B (2012) Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39:2–5. doi: 10.1029/2011GL050144 Google Scholar
  84. Steward AL, von Schiller D, Tockner K et al (2012) When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Environ 10:202–209. doi: 10.1890/110136 CrossRefGoogle Scholar
  85. Striegl RG, Dornblaser MM, McDonald CP et al (2012) Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem Cycles 26:GB0E05. doi: 10.1029/2012GB004306 CrossRefGoogle Scholar
  86. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, HobokenGoogle Scholar
  87. Tang KW, McGinnis DG, Frindte K et al (2014) Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol Oceanogr 59:275–284. doi: 10.4319/lo.2014.59.1.0275 CrossRefGoogle Scholar
  88. Teodoru CR, Prairie YT, Del Giorgio PA (2010) Spatial Heterogeneity of Surface CO2 Fluxes in a newly created eastmain-1 reservoir in Northern Quebec, Canada. Ecosystems 14:28–46. doi: 10.1007/s10021-010-9393-7 CrossRefGoogle Scholar
  89. Timoner X, Acuña V, Frampton L et al (2014) Biofilm functional responses to the rehydration of a dry intermittent stream. Hydrobiologia 727:185–195. doi: 10.1007/s10750-013-1802-4 CrossRefGoogle Scholar
  90. Tockner K, Uehlinger U, Robinson CT (2009) Rivers of Europe. Academic Press, San DiegoGoogle Scholar
  91. Tooth S (2000) Process, form and change in dry land rivers: a review of recent research. Earth Sci Rev 51:67–107. doi: 10.1016/S0012-8252(00)00014-3 CrossRefGoogle Scholar
  92. Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55:1723–1732. doi: 10.4319/lo.2010.55.4.1723 CrossRefGoogle Scholar
  93. Vazquez E, Amalfitano S, Fazi S, Butturini A (2010) Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 102:59–72. doi: 10.1007/s10533-010-9421-x CrossRefGoogle Scholar
  94. Von Schiller D, Acuña V, Graeber D et al (2011) Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquat Sci 73:485–497. doi: 10.1007/s00027-011-0195-6 CrossRefGoogle Scholar
  95. Von Schiller D, Marcé R, Obrador B et al (2014) Carbon dioxide emissions from dry watercourses. Inland waters 4:377–382. doi: 10.5268/IW-4.4.746 CrossRefGoogle Scholar
  96. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi: 10.1038/nature09440 CrossRefGoogle Scholar
  97. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Ocean 97:7373–7382. doi: 10.1029/92JC00188 CrossRefGoogle Scholar
  98. Weiss R (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215. doi: 10.1016/0304-4203(74)90015-2 CrossRefGoogle Scholar
  99. Williams DD (2006) The biology of temporary waters. Oxford University Press, OxfordGoogle Scholar
  100. Xiao S, Liu D, Wang Y et al (2013) Temporal variation of methane flux from Xiangxi Bay of the three gorges reservoir. Sci Rep 3:2500. doi: 10.1038/srep02500 Google Scholar
  101. Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cycles 18:GB4002. doi: 10.1029/2004GB002281 Google Scholar
  102. Zoppini A, Marxsen J (2011) Importance of extracellular enzymes for biogeochemical processes in temporary river sediments during fluctuating dry-wet Conditions. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, pp 103–117Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lluís Gómez-Gener
    • 1
  • Biel Obrador
    • 1
  • Daniel von Schiller
    • 2
  • Rafael Marcé
    • 3
  • Joan Pere Casas-Ruiz
    • 3
  • Lorenzo Proia
    • 3
  • Vicenç Acuña
    • 3
  • Núria Catalán
    • 4
  • Isabel Muñoz
    • 1
  • Matthias Koschorreck
    • 5
  1. 1.Department of EcologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Plant Biology and Ecology, Faculty of Science and TechnologyUniversity of the Basque CountryBilbaoSpain
  3. 3.Catalan Institute for Water ResearchScientific and Technological Park of the University of GironaGironaSpain
  4. 4.Limnology, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  5. 5.Department Lake ResearchHelmholtz Centre for Environmental ResearchMagdeburgGermany

Personalised recommendations