Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: a river continuum reprise

Abstract

We tested a long-standing hypothesis within river ecology, predicted by the River Continuum Concept, that dissolved organic matter (DOM) diversity decreases with stream order. We measured DOM molecular composition across three stream orders in the headwaters of well characterized forested catchments with ultrahigh-resolution mass spectrometry to assess DOM chemogeography and chemodiversity over the spatial scales of climatic regions and fluvial networks. Stream waters with similar dissolved organic carbon (DOC) concentrations in different climatic regions had distinctive DOM compositions, but shared 69.5 % of the 3286 individual chemical formulae detected. DOM compositions common to all watersheds were characterized by abundant lignin-like and tannin-like molecules as well as carboxyl-rich alicyclic-like molecules (CRAM); 50 % of all formulae were found in all streams. Of the roughly 700 unique chemical formulae within a given fluvial network, most were outside the CRAM region within a van Krevelen diagram and 78 to 95 % were restricted to 1st-order streams where diffuse ground water sources surface, coalesce into a channel, and flow downstream. The 1st-order streams within a fluvial network also exhibited the highest formula diversity as well as the greatest numbers of formulae across a broad range of compound classes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdulla HAN, Sleighter RL, Hatcher PG (2013) Two dimensional correlation analysis of fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: a new graphical analysis of trends. Anal Chem 85(8):3895–3902

    Article  Google Scholar 

  2. Aufdenkampe AK, Hedges JI, Richey JE, Krusche AV, Llerena CA (2001) Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnol Oceanogr 46(8):1921–1935

    Article  Google Scholar 

  3. Bae E, Yeo IJ, Jeong B, Shin Y, Shin KH, Kim S (2011) Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic flatter with negative-mode FT-ICR MS. Anal Chem 83(11):4193–4199

    Article  Google Scholar 

  4. Ball GI, Aluwihare LI (2014) CuO-oxidized dissolved organic matter (DOM) elucidated by comprehensive two dimensional gas chromatography-time of flight-mass spectrometry (GC × GC-TOF-MS). Org Geochem 75:87–98

    Article  Google Scholar 

  5. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    Article  Google Scholar 

  6. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600

    Article  Google Scholar 

  7. Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic-matter in the ocean. Science 255(5051):1561–1564

    Article  Google Scholar 

  8. Bernhardt ES, Hall RO Jr, Likens GE (2002) Whole-system estimates of nitrification and nitrate uptake in streams of the Hubbard Brook experimental forest. Ecosystems 5:419–430

    Article  Google Scholar 

  9. Blakney GT, Hendrickson CL, Marshall AG (2011) Predator data station: a fast data acquisition system for advanced FT-ICR MS experiments. Int J Mass Spectrom 306(2–3):246–252

    Article  Google Scholar 

  10. Bott TL, Kaplan LA (1985) Bacterial biomass, metabolic state, and activity in stream sediments—relation to environmental variables and multiple assay comparisons. Appl Environ Microbiol 50(2):508–522

    Google Scholar 

  11. Buurman P, Peterse F, Martin GA (2007) Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci 58(6):1330–1347

    Article  Google Scholar 

  12. Cauwet G (2002) DOM in the coastal zone. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego

    Google Scholar 

  13. Cleveland CC, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7(3):275–285

    Article  Google Scholar 

  14. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185

    Article  Google Scholar 

  15. Coq S, Souquet J-M, Meudec E, Cheynier V, Hättenschwiler S (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91(7):2080–2091

    Article  Google Scholar 

  16. Cory RM, Kaplan LA (2012) Biological lability of streamwater fluorescent dissolved organic matter. Limnol Oceanogr 57(5):1347–1360

    Article  Google Scholar 

  17. Cory RM, Crump BC, Dobkowski JA, Kling GW (2013) Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc Natl Acad Sci USA 110(9):3429–3434

    Article  Google Scholar 

  18. del Giorgio PAPJW (2005) Respiration in aquatic ecosystems: from single cells to the biosphere. In: Williams PAdGePJ (ed) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 267–303

    Google Scholar 

  19. Dittmar T, Koch B, Hertkorn N, Kattner G (2008) A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Meth 6:230–235

    Article  Google Scholar 

  20. Dunlop RW, Jeffries PR (1985) Hydrocarbons of the hypersaline basins of Shark Bay, Western Australia. Org Geochem 8:313–320

    Article  Google Scholar 

  21. Fellman JB, Hood E, Edwards RT, D’Amore DV (2008) Return of salmon-derived nutrients from the riparian zone to the stream during a storm in southeastern Alaska. Ecosystems 11(4):537–544

    Article  Google Scholar 

  22. Fellman J, Hood E, Edwards R, D’Amore D (2009a) Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J Geophys Res. doi:10.1029/2008JG000790

    Google Scholar 

  23. Fellman JB, Hood E, D’Amore DV, Edwards RT, White D (2009b) Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95(2–3):277–293

    Article  Google Scholar 

  24. Fellman JB, Spencer RGM, Raymond PA, Pettit NE, Skrzypek G, Hernes PJ, Grierson PF (2014) Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology 95(9):2622–2632

    Article  Google Scholar 

  25. Fike J (1999) Terrestrial and palustrine plant communities of Pennsylvania. In. PA department of conservation and natural resources. Bureau of Forestry, Harrisburg

    Google Scholar 

  26. Findlay RH, Yeates C, Hullar MAJ, Stahl DA, Kaplan LA (2008) Biorne-level biogeography of streambed microbiota. Appl Environ Microbiol 74(10):3014–3021

    Article  Google Scholar 

  27. Goni MA, Teixeira MJ, Perkey DW (2003) Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuar Coast Shelf Sci 57(5–6):1023–1048

    Article  Google Scholar 

  28. Gonsior M, Peake BM, Cooper WT, Podgorski DC, D’Andrilli J, Dittmar T, Cooper WJ (2011) Characterization of dissolved organic matter across the Subtropical Convergence off the South Island, New Zealand. Mar Chem 123(1–4):99–110

    Article  Google Scholar 

  29. Gonsior M, Schmitt-Kopplin P, Bastviken D (2013) Depth-dependent molecular composition and photo-reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences 10(11):6945–6956

    Article  Google Scholar 

  30. Hall RO Jr, Baker MA, Rosi-Marshall EJ, Tank JL, Newbold JD (2013) Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences 10(11):7323–7331

    Article  Google Scholar 

  31. Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci 5(5):421–445

    Article  Google Scholar 

  32. Hartshorn G (1983) Plants: introduction. In: Janzen D (ed) Costa Rican natural history. University of Chicago Press, Chicago, pp 118–157

    Google Scholar 

  33. Hedges JI, Mayorga E, Tsamakis E, McClain ME, Aufdenkampe A, Quay P, Richey JE, Benner R, Opsahl S, Black B, Pimentel T, Quintanilla J, Maurice L (2000) Organic matter in Bolivian tributaries of the Amazon River: a comparison to the lower mainstream. Limnol Oceanogr 45(7):1449–1466

    Article  Google Scholar 

  34. Hernandez Z, Almendros G, Carral P, Alvarez A, Knicker H, Perez-Trujillo JP (2012) Influence of non-crystalline minerals in the total amount, resilience and molecular composition of the organic matter in volcanic ash soils (Tenerife Island, Spain). Eur J Soil Sci 63(5):603–615

    Article  Google Scholar 

  35. Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges JI (2006) Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta 70(12):2990–3010

    Article  Google Scholar 

  36. Hertkorn N, Harir M, Koch BP, Michalke B, Schmitt-Kopplin P (2013) High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10(3):1583–1624

    Article  Google Scholar 

  37. Hockaday WC, Purcell JM, Marshall AG, Baldock JA, Hatcher PG (2009) Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment. Limnol Oceanogr Meth 7:81–95

    Article  Google Scholar 

  38. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, p 1132

    Google Scholar 

  39. Jaffe R, McKnight D, Maie N, Cory R, McDowell WH, Campbell JL (2008) Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res Biogeosci 113(G4):G04032

    Article  Google Scholar 

  40. Jaffe R, Yamashita Y, Maie N, Cooper WT, Dittmar T, Dodds WK, Jones JB, Myoshi T, Ortiz-Zayas JR, Podgorski DC, Watanabe A (2012) Dissolved organic matter in headwater streams: compositional variability across climatic regions of North America. Geochim Cosmochim Acta 94:95–108

    Article  Google Scholar 

  41. Kaiser NK, Quinn JP, Blakney GT, Hendrickson CL, Marshall AG (2011a) A Novel 9.4 Tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range. J Am Soc Mass Spectrom 22(8):1343–1351

    Article  Google Scholar 

  42. Kaiser NK, Savory JJ, McKenna AM, Quinn JP, Hendrickson CL, Marshall AG (2011b) Electrically compensated fourier transform ion cyclotron resonance cell for complex mixture mass analysis. Anal Chem 83(17):6907–6910

    Article  Google Scholar 

  43. Kaplan LA, Larson RA, Bott TL (1980) Patterns of dissolved organic carbon in transport. Limnol Oceanogr 25:1034–1043

    Article  Google Scholar 

  44. Kaplan LA, Wiegner TN, Newbold JD, Ostrom PH, Gandhi H (2008) Untangling the complex issue of dissolved organic carbon uptake: a stable isotope approach. Freshw Biol 53(5):855–864

    Article  Google Scholar 

  45. Kellerman AM, Dittmar T, Kothawala DN, Tranvik LJ (2014) Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat Commun 5:3804

    Article  Google Scholar 

  46. Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal Chem 75:5336–5344

    Article  Google Scholar 

  47. Kim S, Kaplan LA, Hatcher PG (2006) Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra-high resolution mass spectrometry. Limnol Oceanogr 51(2):1054–1063

    Article  Google Scholar 

  48. Kim M, Kim W-S, Tripathi B, Adams J (2014) Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb Ecol 67(4):837–848

    Article  Google Scholar 

  49. Kleber M, Nico PS, Plante AF, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biol 17(2):1097–1107

    Article  Google Scholar 

  50. Koch BP, Witt MR, Engbrodt R, Dittmar T, Kattner G (2005) Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim Cosmochim Acta 69(13):3299–3308

    Article  Google Scholar 

  51. Kujawinski EB, Behn MD (2006) Automated analysis of electrospray ionization fourier transform ion cyclotron resonance mass spectra of natural organic matter. Anal Chem 78(13):4363–4373

    Article  Google Scholar 

  52. Kujawinski EB, Hatcher PG, Freitas MA (2002) High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: improvements and comparisons. Anal Chem 74(2):413–419

    Article  Google Scholar 

  53. Lam B, Baer A, Alaee M, Lefebvre B, Moser A, Williams A, Simpson AJ (2007) Major structural components in freshwater dissolved organic matter. Environ Sci Technol 41(24):8240–8247

    Article  Google Scholar 

  54. Lauerwald R, Hartmann J, Ludwig W, Moosdorf N (2012) Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America. J Geophys Res Biogeosci 117:G01027

    Article  Google Scholar 

  55. Ledford EB, Rempel DL, Gross ML (1984) Space-charge effects in Fourier-transform mass-spectrometry -mass calibration. Anal Chem 56(14):2744–2748

    Article  Google Scholar 

  56. Leopold L, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Freeman, San Francisco 522

    Google Scholar 

  57. Longnecker K, Kujawinski EB (2011) Composition of dissolved organic matter in groundwater. Geochim Cosmochim Acta 75(10):2752–2761

    Article  Google Scholar 

  58. Mann PJ, Davydova A, Zimov N, Spencer RGM, Davydov S, Bulygina E, Zimov S, Holmes RM (2012) Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J Geophys Res Biogeosci 117:G03001

    Article  Google Scholar 

  59. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17(1):1–35

    Article  Google Scholar 

  60. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data. Version 4. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  61. McIntosh RP (1962) The forest cover of the Catskill Mountain region, New York, as indicated by land survey records. Am Midl Natural 68(2):409–423

    Article  Google Scholar 

  62. Mei Y, Hornberger GM, Kaplan LA, Newbold JD, Aufdenkampe AK (2012) Estimation of dissolved organic carbon contribution from hillslope soils to a headwater stream. Water Res Res 48:9514

    Article  Google Scholar 

  63. Minor EC, Steinbring CJ, Longnecker K, Kujawinski EB (2012) Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometry. Org Geochem 43:1–11

    Article  Google Scholar 

  64. Minshall GW, Cummins KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci 42(5):1045–1055

    Article  Google Scholar 

  65. Moran MA, Sheldon JWM, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45(6):1254–1264

    Article  Google Scholar 

  66. Mosher JJ, Klein GC, Marshall AG, Findlay RH (2010) Influence of bedrock geology on dissolved organic matter quality in stream water. Org Geochem 41(11):1177–1188

    Article  Google Scholar 

  67. Newbold JD, O’Neill RV, Elwood JW, Van Winkle W (1982) Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. Am Natural 120:628–652

    Article  Google Scholar 

  68. Newbold JD, Sweeney BW, Jackson JK, Kaplan LA (1995) Concentrations and export of solutes from 6 mountain streams in northwestern Costa-Rica. J N Am Benthol Soc 14(1):21–37

    Article  Google Scholar 

  69. Newbold JD, Bott TL, Kaplan LA, Sweeney BW, Vannote RL (1997) Organic matter dynamics in White Clay Creek, Pennsylvania. USA J N Am Benthol Soc 16(1):46–50

    Article  Google Scholar 

  70. Newbold JD, Bott TL, Kaplan LA, Dow CL, Jackson JK, Aufdenkampe AK, Martin LA, Van Horn DJ, de Long AA (2006) Uptake of nutrients and organic C in streams in New York City drinking-water-supply watersheds. J N Am Benthol Soc 25(4):998–1017

    Article  Google Scholar 

  71. Osono T, Takeda H (2004) Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol Res 19(6):593–602

    Article  Google Scholar 

  72. Osterholz H, Dittmar T, Niggemann J (2014) Molecular evidence for rapid dissolved organic matter turnover in Arctic fjords. Mar Chem 160:1–10

    Article  Google Scholar 

  73. Qian KN, Robbins WK, Hughey CA, Cooper HJ, Rodgers RP, Marshall AG (2001) Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 15(6):1505–1511

    Article  Google Scholar 

  74. Qualls RG (2000) Comparison of the behavior of soluble organic and inorganic nutrients in forest soils. Forest Ecol Manag 138:29–50

    Article  Google Scholar 

  75. Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 104(8):2761–2766

    Article  Google Scholar 

  76. Rossel PE, Vähätalo AV, Witt M, Dittmar T (2013) Molecular composition of dissolved organic matter from a wetland plant (Juncus effusus) after photochemical and microbial decomposition (1.25 yr): common features with deep sea dissolved organic matter. Org Geochem 60:62–71

    Article  Google Scholar 

  77. Roth VN, Dittmar T, Gaupp R, Gleixner G (2014) Ecosystem-specific composition of dissolved organic matter. Vadose Zone J. doi:10.2136/vzj2013.09.0162

    Google Scholar 

  78. Sawyer AH, Kaplan LA, Lazareva O, Michael HA (2014) Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Res Res 50(6):4877–4892

    Article  Google Scholar 

  79. Senko MW, Hendrickson CL, Emmett MR, Shi SDH, Marshall AG (1997) External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 8(9):970–976

    Article  Google Scholar 

  80. Shi SDH, Drader JJ, Freitas MA, Hendrickson CL, Marshall AG (2000) Comparison and interconversion of the two most common frequency-to-mass calibration functions for Fourier transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom 195:591–598

    Article  Google Scholar 

  81. Sleighter RL, Hatcher PG (2007) The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J Mass Spectrom 42(5):559–574

    Article  Google Scholar 

  82. Sleighter RL, Hatcher PG (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 110(3–4):140–152

    Article  Google Scholar 

  83. Sleighter RL, Cory RM, Kaplan LA, Abdulla HAN, Hatcher PG (2014) A coupled geochemical and biogeochemical approach to characterize bio-reactivity of dissolved organic matter from a headwater stream. J Geophys Res 119(8):1520–1537

    Article  Google Scholar 

  84. Spencer RGM, Hernes PJ, Aufdenkampe AK, Baker A, Gulliver P, Stubbins A, Aiken GR, Dyda RY, Butler KD, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2012) An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim Cosmochim Acta 84:614–627

    Article  Google Scholar 

  85. Stenson AC, Landing WM, Marshall AG, Cooper WT (2002) Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal Chem 74(17):4397–4409

    Article  Google Scholar 

  86. Stenson AC, Marshall AG, Cooper WT (2003) Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem 75(6):1275–1284

    Article  Google Scholar 

  87. Stubbins A, Spencer RGM, Chen HM, Hatcher PG, Mopper K, Hernes PJ, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2010) Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr 55(4):1467–1477

    Article  Google Scholar 

  88. Sun L, Perdue EM, Meyer JL, Weis J (1997) Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol Oceanogr 42(4):714–721

    Article  Google Scholar 

  89. Tolmachev AV, Robinson EW, Wu S, Kang H, Lourette NM, Pasa-Tolic L, Smith RD (2008) Trapped-ion cell with improved DC potential harmonicity for FT-ICR MS. J Am Soc Mass Spectrom 19(4):586–597

    Article  Google Scholar 

  90. Tranvik LJ, Bertilsson S (2001) Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4(5):458–463

    Article  Google Scholar 

  91. Vallino JJ, Hopkinson CS, Hobbie JE (1996) Modeling bacterial utilization of dissolved organic matter: optimization replaces monod growth kinetics. Limnol Oceanogr 41(8):1591–1609

    Article  Google Scholar 

  92. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continuum concept. Can J Fish Aquat Sci 37(1):130–137

    Article  Google Scholar 

  93. Volk CJ, Volk CB, Kaplan LA (1997) Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol Oceanogr 42(1):39–44

    Article  Google Scholar 

  94. Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE (2013) Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci 6(7):530–533

    Article  Google Scholar 

  95. Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40:1369–1380

    Article  Google Scholar 

  96. Wickland KP, Neff JC, Aiken GR (2007) Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10(8):1323–1340

    Article  Google Scholar 

  97. Wilcox BE, Hendrickson CL, Marshall AG (2002) Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J Am Soc Mass Spectrom 13(11):1304–1312

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by the National Science Foundation DEB Grant No. 11-20717 and facilitated by infrastructure associated with DEB Grant No. 1052716 for White Clay Creek and DEB Grant No. 0526516 for Rio Tempisquito. NHMFL work was supported by NSF Division of Materials Research through DMR-11-57490, the Florida State University Future Fuels Institute, BP/The Gulf of Mexico Research Initiative to the Deep-C Consortium, and the State of Florida. Partial funding was provided by Stroud™ Water Research Center’s Research Endowment fund. Sampling efforts were assisted by Sherman Roberts, Michael Gentile, Rafael Morales and Cristian Collado.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louis A. Kaplan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mosher, J.J., Kaplan, L.A., Podgorski, D.C. et al. Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: a river continuum reprise. Biogeochemistry 124, 371–385 (2015). https://doi.org/10.1007/s10533-015-0103-6

Download citation

Keywords

  • DOM
  • FT ICR-MS
  • Headwater streams
  • Carbon cycling