Advertisement

Biogeochemistry

, Volume 124, Issue 1–3, pp 1–11 | Cite as

Glacial meltwater from Greenland is not likely to be an important source of Fe to the North Atlantic

  • M. J. HopwoodEmail author
  • S. Bacon
  • K. Arendt
  • D. P. Connelly
  • P. J. Statham
Synthesis and Emerging Ideas

Abstract

Recent work has shown that glaciers are a globally significant source of the micronutrient Fe to the ocean. Polar regions are particularly susceptible to climate change and have been subject to pronounced warming in the past few decades. In response to this warming, the volume of glacial meltwater runoff from Greenland has increased. This meltwater has a relatively high particulate and dissolved Fe content. Seasonal Fe limitation of marine ecosystems has been found in parts of the North Atlantic, so it has been proposed that increasing fluxes of Fe rich meltwater from Greenland to the North Atlantic could alleviate this Fe limitation and thereby increase marine primary production. However, here we use a synthesis of biogeochemical and physical oceanography studies to suggest that the physical circulation around Greenland does not favour direct export of dissolved or particulate Fe from inshore to offshore waters. The Fe budget in surface waters of the North Atlantic may therefore be insensitive to increasing meltwater fluxes from Greenland.

Keywords

Iron North Atlantic Glacial flour Greenland 

Notes

Acknowledgments

The authors thank two reviewers for constructive comments on the manuscript, the Danish Meteorological Institute for providing satellite images and Kate Davis (Southampton) for Fig. 1.

References

  1. Achterberg EP, Moore CM, Henson SA, Steigenberger S, Stohl A, Eckhardt S, Avendano LC, Cassidy M, Hembury D, Klar JK, Lucas MI, Macey AI, Marsay CM, Ryan-Keogh TJ (2013) Natural iron fertilization by the Eyjafjallajokull volcanic eruption. Geophys Res Lett 40(5):921–926Google Scholar
  2. Aguilar-Islas AM, Rember R, Nishino S, Kikuchi T, Itoh M (2013) Partitioning and lateral transport of iron to the Canada Basin. Polar Sci 7(2):82–99Google Scholar
  3. Ardelan MV, Holm-Hansen O, Hewes CD, Reiss CS, Silva NS, Dulaiova H, Steinnes E, Sakshaug E (2010) Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosciences 7(1):11–25Google Scholar
  4. Arendt KE, Nielsen TG, Rysgaard S, Tonnesson K (2010) Differences in plankton community structure along the Godthabsfjord, from the Greenland Ice Sheet to offshore waters. Mar Ecol Prog Ser 401:49–62Google Scholar
  5. Arendt KE, Dutz J, Jonasdottir SH, Jung-Madsen S, Mortensen J, Moller EF, Nielsen TG (2011) Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J Plankton Res 33(10):1526–1537Google Scholar
  6. Arendt KE, Juul-Pedersen T, Mortensen J, Blicher ME, Rysgaard S (2013) A 5-year study of seasonal patterns in mesozooplankton community structure in a sub-Arctic fjord reveals dominance of Microsetella norvegica (Crustacea, Copepoda). J Plankton Res 35(1):105–120Google Scholar
  7. Arnalds O, Olafsson H, Dagsson-Waldhauserova P (2014) Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources. Biogeosciences 11(23):6623–6632Google Scholar
  8. Bacon S, Marshall A, Holliday PN, Aksenov Y, Dye SR (2014) Seasonal variability of the East Greenland Coastal current. J Geophys Res: Oceans 119(6):3967–3987Google Scholar
  9. Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys Res Lett 39:L19501Google Scholar
  10. Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA (2013) Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat Geosci 6(4):274–278Google Scholar
  11. Borrione I, Aumont O, Nielsdottir MC, Schlitzer R (2014) Sedimentary and atmospheric sources of iron around South Georgia, Southern Ocean: a modelling perspective. Biogeosciences 11(7):1981–2001Google Scholar
  12. Box JE, Colgan W (2013) Greenland Ice Sheet mass balance reconstruction. Part III: marine Ice loss and total mass balance (1840–2010). J Clim 26(18):6990–7002Google Scholar
  13. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407(6805):695–702Google Scholar
  14. Boyle EA, Edmond JM, Sholkovitz ER (1977) Mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41(9):1313–1324Google Scholar
  15. Bucciarelli E, Blain S, Treguer P (2001) Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean). Mar Chem 73(1):21–36Google Scholar
  16. Buck KN, Sohst B, Sedwick PN (In Press) The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section. Deep Sea Res Part II: Top Stud OceanogrGoogle Scholar
  17. Buesseler KO, Doney SC, Karl DM, Boyd PW, Caldeira K, Chai F, Coale KH, de Baar HJW, Falkowski PG, Johnson KS, Lampitt RS, Michaels AF, Naqvi SWA, Smetacek V, Takeda S, Watson AJ (2008) Environment—Ocean iron fertilization—moving forward in a sea of uncertainty. Science 319(5860):162–170Google Scholar
  18. Bullard JE (2013) Contemporary glacigenic inputs to the dust cycle. Earth Surf Proc Land 38(1):71–89Google Scholar
  19. Calbet A, Riisgaard K, Saiz E, Zamora S, Stedmon C, Nielsen TG (2011) Phytoplankton growth and microzooplankton grazing along a sub-Arctic fjord (Godthabsfjord, west Greenland). Mar Ecol Prog Ser 442:11–22Google Scholar
  20. Carrivick JL, Quincey DJ (2014) Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet. Global Planet Change 116:156–163Google Scholar
  21. Chu VW, Smith LC, Rennermalm AK, Forster RR, Box JE (2012) Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet. Cryosphere 6(1):1–19Google Scholar
  22. Conway TM, John SG (2014) Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511(7508):212–215Google Scholar
  23. Crusius J, Schroth AW, Gasso S, Moy CM, Levy RC, Gatica M (2011) Glacial flour dust storms in the Gulf of Alaska: hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophys Res Lett 38:L06602Google Scholar
  24. Cullen JT, Chong M, Ianson D (2009) British Columbian continental shelf as a source of dissolved iron to the subarctic northeast Pacific Ocean. Global Biogeochem Cycles 23(4):GB4012Google Scholar
  25. Dai MH, Martin JM (1995) First data on trace-metal level and behavior in 2 major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth Planet Sci Lett 131(3–4):127–141Google Scholar
  26. de Baar HJW, de Jong JTM, Bakker DCE, Loscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373:412–415Google Scholar
  27. de Jong J, Schoemann V, Lannuzel D, Croot P, de Baar H, Tison J-L (2012) Natural iron fertilization of the Atlantic sector of the Southern Ocean by continental shelf sources of the Antarctic Peninsula. J Geophys Res: Biogeosci 117:G01029Google Scholar
  28. Dierssen HM, Smith RC, Vernet M (2002) Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc Natl Acad Sci USA 99(4):1790–1795Google Scholar
  29. Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P, Hicks BB, Miller JM, Prospero JM, Arimoto R, Church TM, Ellis W, Galloway JN, Hansen L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudine A, Tokos JJ, Tsunogai S, Wollast R, Zhou M (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem Cycles 5:193–259Google Scholar
  30. Dulaiova H, Ardelan MV, Henderson PB, Charette MA (2009) Shelf-derived iron inputs drive biological productivity in the southern Drake Passage. Global Biogeochem Cycles 23:GB4014Google Scholar
  31. Dziallas C, Grossart HP, Tang KW, Nielsen TG (2013) Distinct communities of free-living and Copepod-associated microorganisms along a salinity gradient in Godthabsfjord, West Greenland. Arct Antarct Alp Res 45(4):471–480Google Scholar
  32. Elrod VA, Berelson WM, Coale KH, Johnson KS (2004) The flux of iron from continental shelf sediments: a missing source for global budgets. Geophys Res Lett 31(12):L12307Google Scholar
  33. Fellman JB, Spencer RGM, Hernes PJ, Edwards RT, D’Amore DV, Hood E (2010) The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems. Mar Chem 121(1–4):112–122Google Scholar
  34. Fitzwater SE, Johnson KS, Gordon RM, Coale KH, Smith WO (2000) Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth. Deep-Sea Res Part II-Top Stud Oceanogr 47(15–16):3159–3179Google Scholar
  35. Frajka-Williams E, Rhines PB (2010) Physical controls and interannual variability of the Labrador Sea spring phytoplankton bloom in distinct regions. Deep-Sea Res Part I-Oceanogr Res Pap 57(4):541–552Google Scholar
  36. Frants M, Gille ST, Hatta M, Hiscock WT, Kahru M, Measures CI, Mitchell BG, Zhou M (2013) Analysis of horizontal and vertical processes contributing to natural iron supply in the mixed layer in southern Drake Passage. Deep-Sea Res Part II-Top Stud Oceanogr 90:68–76Google Scholar
  37. Gerringa LJA, Alderkamp A-C, Laan P, Thuroczy C-E, de Baar HJW, Mills MM, van Dijken GL, van Haren H, Arrigo KR (2012) Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry. Deep-Sea Res Part II-Top Stud Oceanogr 71–76:16–31Google Scholar
  38. Gordon RM, Johnson KS, Coale KH (1998) The behaviour of iron and other trace elements during the IronEx-I and PlumEx experiments in the equatorial Pacific. Deep-Sea Res Part II-Top Stud Oceanogr 45(6):995–1041Google Scholar
  39. Gustafsson O, Widerlund A, Andersson PS, Ingri J, Roos P, Ledin A (2000) Colloid dynamics and transport of major elements through a boreal river—brackish bay mixing zone. Mar Chem 71(1–2):1–21Google Scholar
  40. Hanna E, Huybrechts P, Steffen K, Cappelen J, Huff R, Shuman C, Irvine-Fynn T, Wise S, Griffiths M (2008) Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. J Clim 21(2):331–341Google Scholar
  41. Harden BE, Straneo F, Sutherland DA (2014) Moored observations of synoptic and seasonal variability in the East Greenland Coastal current. J Geophys Res Oceans 119(12):8838–8857Google Scholar
  42. Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, Tedstone A, Nienow P, Lee K, Telling J (2014) Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun 5:3929Google Scholar
  43. Holliday NP, Waniek JJ, Davidson R, Wilson D, Brown L, Sanders R, Pollard RT, Allen JT (2006) Large-scale physical controls on phytoplankton growth in the Irminger Sea Part I: hydrographic zones, mixing and stratification. J Mar Syst 59(3–4):201–218Google Scholar
  44. Homoky WB, Severmann S, McManus J, Berelson WM, Riedel TE, Statham PJ, Mills RA (2012) Dissolved oxygen and suspended particles regulate the benthic flux of iron from continental margins. Mar Chem 134:59–70Google Scholar
  45. Hong HS, Kester DR (1985) Chemical forms of iron in the Connecticut River estuary. Estuar Coast Shelf Sci 21(4):449–459Google Scholar
  46. Hood E, Scott D (2008) Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage. Nat Geosci 1(9):583–587Google Scholar
  47. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lonne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wangberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21(1):167–208Google Scholar
  48. Hopwood MJ, Statham PJ, Tranter M, Wadham J (2014) Glacial flours as a potential source of Fe(II) and Fe(III) to polar waters. Biogeochemistry 118(1):443–452Google Scholar
  49. Hudson B, Overeem I, McGrath D, Syvitski JPM, Mikkelsen A, Hasholt B (2014) MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8(4):1161–1176Google Scholar
  50. Hyacinthe C, Bonneville S, Van Cappellen P (2006) Reactive iron(III) in sediments: chemical versus microbial extractions. Geochim Cosmochim Acta 70(16):4166–4180Google Scholar
  51. Jickells TD, Spokes LJ (2001) Atmospheric Iron Inputs to the Oceans. In: Turner DR, Hunter KA (eds) The biogeochemistry of iron in seawater. IUPAC series on analytical and physical chemistry of environmental systems. Wiley, Chichester, pp 85–121Google Scholar
  52. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, laRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71Google Scholar
  53. Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57(3–4):137–161Google Scholar
  54. Juul-Pedersen T, Arendt KE, Mortensen J, Blicher ME, Søgaard DH, Rysgaard S (In Press) Seasonal and interannual phytoplankton production in a sub-arctic tidewater outlet glacier fjord, west Greenland. Mar Ecol Prog SerGoogle Scholar
  55. Kjeldsen KK, Mortensen J, Bendtsen J, Petersen D, Lennert K, Rysgaard S (2014) Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland. J Geophys Res-Earth Surf 119(6):1310–1321Google Scholar
  56. Klunder MB, Bauch D, Laan P, de Baar HJW, van Heuven S, Ober S (2012) Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J Geophys Res: Oceans 117(C1):C01027Google Scholar
  57. Lam PJ, Bishop JKB (2008) The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys Res Lett 35(7):L07608Google Scholar
  58. Lawson EC, Bhatia MP, Wadham JL, Kujawinski EB (2014) Continuous summer export of nitrogen-rich organic matter from the Greenland ice sheet inferred by ultrahigh resolution mass spectrometry. Environ Sci Technol 48(24):14248–14257Google Scholar
  59. Le Moigne FAC, Moore CM, Sanders RJ, Villa-Alfageme M, Steigenberger S, Achterberg EP (2014) Sequestration efficiency in the iron-limited North Atlantic: implications for iron supply mode to fertilized blooms. Geophys Res Lett 41(13):4619–4627Google Scholar
  60. Lippiatt SM, Lohan MC, Bruland KW (2010) The distribution of reactive iron in northern Gulf of Alaska coastal waters. Mar Chem 121(1–4):187–199Google Scholar
  61. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343Google Scholar
  62. Martin JH, Fitzwater SE, Gordon RM (1990a) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles 4(1):5–12Google Scholar
  63. Martin JH, Gordon RM, Fitzwater SE (1990b) Iron in Antarctic waters. Nature 345:156–158Google Scholar
  64. Mayer LM (1982a) Aggregation of colloidal iron during estuarine mixing—kinetics, mechanism, and seasonality. Geochim Cosmochim Acta 46(12):2527–2535Google Scholar
  65. Mayer LM (1982b) Retention of riverine iron in estuaries. Geochim Cosmochim Acta 46(6):1003–1009Google Scholar
  66. Measures CI, Brown MT, Selph KE, Apprill A, Zhou M, Hatta M, Hiscock WT (2013) The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake Passage, Antarctica. Deep-Sea Res Part II-Top Stud Oceanogr 90:77–88Google Scholar
  67. Mernild SH, Liston GE, Hasholt B, Knudsen NT (2006) Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland. J Hydrometeorol 7(4):808–824Google Scholar
  68. Mortensen J, Lennert K, Bendtsen J, Rysgaard S (2011) Heat sources for glacial melt in a sub-Arctic fjord (Godthabsfjord) in contact with the Greenland Ice Sheet. J Geophys Res-Oceans 116:C01013Google Scholar
  69. Mortensen J, Bendtsen J, Motyka RJ, Lennert K, Truffer M, Fahnestock M, Rysgaard S (2013) On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J Geophys Res-Oceans 118(3):1382–1395Google Scholar
  70. Myers PG, Donnelly C, Ribergaard MH (2009) Structure and variability of the West Greenland current in summer derived from 6 repeat standard sections. Prog Oceanogr 80(1–2):93–112Google Scholar
  71. Nedelec F, Statham PJ, Mowlem M (2007) Processes influencing dissolved iron distributions below the surface at the Atlantic Ocean-Celtic Sea shelf edge. Mar Chem 104(3–4):156–170Google Scholar
  72. Nielsdottir MC, Moore CM, Sanders R, Hinz DJ, Achterberg EP (2009) Iron limitation of the postbloom phytoplankton communities in the Iceland Basin. Global Biogeochem Cycles 23(3):GB3001Google Scholar
  73. Nielsdottir MC, Bibby TS, Moore CM, Hinz DJ, Sanders R, Whitehouse M, Korb R, Achterberg EP (2012) Seasonal and spatial dynamics of iron availability in the Scotia Sea. Mar Chem 130:62–72Google Scholar
  74. Painter SC, Henson SA, Forryan A, Steigenberger S, Klar J, Stinchcombe MC, Rogan N, Baker AR, Achterberg EP, Moore CM (2014) An assessment of the vertical diffusive flux of iron and other nutrients to the surface waters of the subpolar North Atlantic Ocean. Biogeosciences 11(8):2113–2130Google Scholar
  75. Planquette H, Statham PJ, Fones GR, Charette MA, Moore CM, Salter I, Nedelec FH, Taylor SL, French M, Baker AR, Mahowald N, Jickells TD (2007) Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean. Deep-Sea Res Part II-Top Stud Oceanogr 54(18–20):1999–2019Google Scholar
  76. Planquette H, Sanders RR, Statham PJ, Morris PJ, Fones GR (2011) Fluxes of particulate iron from the upper ocean around the Crozet Islands: A naturally iron-fertilized environment in the Southern Ocean. Global Biogeochem Cycles 25(2):GB2011Google Scholar
  77. Planquette H, Sherrell RM, Stammerjohn S, Field MP (2013) Particulate iron delivery to the water column of the Amundsen Sea, Antarctica. Mar Chem 153:15–30Google Scholar
  78. Prospero JM, Bullard JE, Hodgkins R (2012) High-latitude dust over the North Atlantic: inputs from icelandic proglacial dust storms. Science 335(6072):1078–1082Google Scholar
  79. Quigg A, Nunnally CC, McInnes AS, Gay S, Rowe GT, Dellapenna TM, Davis RW (2013) Hydrographic and biological controls in two subarctic fjords: an environmental case study of how climate change could impact phytoplankton communities. Mar Ecol Prog Ser 480:21–37Google Scholar
  80. Raiswell R (2011) Iceberg-hosted nanoparticulate Fe in the Southern Ocean: mineralogy, origin, dissolution kinetics and source of bioavailable Fe. Deep-Sea Res Part II-Top Stud Oceanogr 58(11–12):1364–1375Google Scholar
  81. Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1(1):1–220Google Scholar
  82. Raiswell R, Tranter M, Benning LG, Siegert M, De’ath R, Huybrechts P, Payne T (2006) Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans. Geochim Cosmochim Acta 70(11):2765–2780Google Scholar
  83. Raiswell R, Benning LG, Tranter M, Tulaczyk S (2008) Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Trans 9(7):9Google Scholar
  84. Rijkenberg MJA, Middag R, Laan P, Gerringa LJA, van Aken HM, Schoemann V, de Jong JTM, de Baar HJW (2014) The distribution of dissolved iron in the west atlantic ocean. PLoS One 9(6):e101323–e101323Google Scholar
  85. Ryan-Keogh TJ, Macey AI, Nielsdottir MC, Lucas MI, Steigenberger SS, Stinchcombe MC, Achterberg EP, Bibby TS, Moore CM (2013) Spatial and temporal development of phytoplankton iron stress in relation to bloom dynamics in the high-latitude North Atlantic Ocean. Limnol Oceanogr 58(2):533–545Google Scholar
  86. Rysgaard S, Vang T, Stjernholm M, Rasmussen B, Windelin A, Kiilsholm S (2003) Physical conditions, carbon transport, and climate change impacts in a northeast Greenland fjord. Arct Antarct Alp Res 35(3):301–312Google Scholar
  87. Schroth AW, Crusius J, Sholkovitz ER, Bostick BC (2009) Iron solubility driven by speciation in dust sources to the ocean. Nat Geosci 2(5):337–340Google Scholar
  88. Schroth AW, Crusius J, Campbell RW, Hoyer I (2014) Estuarine removal of glacial iron and implications for iron fluxes to the ocean. Geophys Res Lett 41(11):3951–3958Google Scholar
  89. Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic iron flux and its isotope composition. Geochim Cosmochim Acta 74(14):3984–4004Google Scholar
  90. Shaw TJ, Raiswell R, Hexel CR, Vu HP, Moore WS, Dudgeon R, Smith KL Jr (2011) Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep-Sea Res Part II-Top Stud Oceanogr 58(11–12):1376–1383Google Scholar
  91. Sholkovitz ER (1978) The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet Sci Lett 41(1):77–86Google Scholar
  92. Sholkovitz ER, Boyle EA, Price NB (1978) The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet Sci Lett 40:130–136Google Scholar
  93. Siedlecki SA, Mahadevan A, Archer DE (2012) Mechanism for export of sediment-derived iron in an upwelling regime. Geophys Res Lett 39(3):L03601Google Scholar
  94. Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M, Cisewski B, Savoye N, Webb A, d’Ovidio F, Arrieta JM, Bathmann U, Bellerby R, Berg GM, Croot P, Gonzalez S, Henjes J, Herndl GJ, Hoffmann LJ, Leach H, Losch M, Mills MM, Neill C, Peeken I, Roettgers R, Sachs O, Sauter E, Schmidt MM, Schwarz J, Terbrueggen A, Wolf-Gladrow D (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487(7407):313–319Google Scholar
  95. Statham PJ, Skidmore M, Tranter M (2008) Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Global Biogeochem Cycles 22(3):GB3013Google Scholar
  96. Straneo F, Heimbach P (2013) North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504(7478):36–43Google Scholar
  97. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3(3):182–186Google Scholar
  98. Sutherland DA, Pickart RS, Jones EP, Azetsu-Scott K, Eert AJ, Olafsson J (2009) Freshwater composition of the waters off southeast Greenland and their link to the Arctic Ocean. J Geophys Res-Oceans 114:C05020Google Scholar
  99. Tang KW, Nielsen TG, Munk P, Mortensen J, Moller EF, Arendt KE, Tonnesson K, Juul-Pedersen T (2011) Metazooplankton community structure, feeding rate estimates, and hydrography in a meltwater-influenced Greenlandic fjord. Mar Ecol Prog Ser 434:77–90Google Scholar
  100. Thuroczy C-E, Alderkamp A-C, Laan P, Gerringa LJA, Mills MM, Van Dijken GL, de Baar HJW, Arrigo KR (2012) Key role of organic complexation of iron in sustaining phytoplankton blooms in the Pine Island and Amundsen Polynyas (Southern Ocean). Deep-Sea Res Part II-Top Stud Oceanogr 71–76:49–60Google Scholar
  101. Treguer PJ (2014) The Southern Ocean silica cycle. CR Geosci 346(11–12):279–286Google Scholar
  102. van der Merwe P, Bowie AR, Quéroué F, Armand L, Blain S, Chever F, Davies D, Dehairs F, Planchon F, Sarthou G, Townsend AT, Trull TW (2015) Sourcing the iron in the naturally fertilised bloom around the Kerguelen Plateau: particulate trace metal dynamics. Biogeosciences 12(3):739–755Google Scholar
  103. Wadley MR, Jickells TD, Heywood KJ (2014) The role of iron sources and transport for Southern Ocean productivity. Deep-Sea Res Part I-Oceanogr Res Pap 87:82–94Google Scholar
  104. Waniek JJ, Holliday NP, Davidson R, Brown L, Henson SA (2005) Freshwater control of onset and species composition of Greenland shelf spring bloom. Mar Ecol Prog Ser 288:45–57Google Scholar
  105. Wu J, Luther GW III (1996) Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean. Geochim Cosmochim Acta 60(15):2729–2741Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. J. Hopwood
    • 1
    Email author
  • S. Bacon
    • 2
  • K. Arendt
    • 3
  • D. P. Connelly
    • 2
  • P. J. Statham
    • 1
  1. 1.Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK
  2. 2.National Oceanography CentreUniversity of Southampton Waterfront CampusSouthamptonUK
  3. 3.Greenland Institute of Natural ResourcesNuukGreenland

Personalised recommendations