Abstract
In recent years, litter decomposition studies have begun to move beyond the concept of mass loss to consider the fate of fresh and pyrolized decomposing plant material in the ecosystem. However, these concepts have yet to be incorporated into conceptual models of litter decomposition. Understanding how fresh and pyrolized plant litter chemical traits control the partitioning of mass loss to dissolved organic carbon (DOC) leaching and respiration to CO2 would help to inform models of litter-soil-atmosphere carbon (C) cycling. To test these controls, we incubated five fresh and one pyrolized leaf litters with differing chemistry and measured DOC and CO2 fluxes as well as changes in substrate and dissolved organic matter (DOM) chemistry over time using Fourier transformed infrared spectroscopy and wet chemistry. We found that the amount of hot water extractable C was a strong predictor of initial DOC leaching, while the lignocellulose index [Lignin/(Lignin + α-Cellulose)] was a strong inverse predictor of later stage DOC:CO2 partitioning. Changes in substrate and DOM chemistry indicated a progression of substrate availability for leaching: from soluble plant components, to partially decomposed cellulose and lignin, to microbial products. Based on these results we developed a new conceptual model that demonstrates how chemical traits of fresh and pyrolyzed plant litter can be used to predict the fate of aboveground organic matter decomposition and form a better linkage between aboveground decomposition and terrestrial ecosystem C cycling.
This is a preview of subscription content, access via your institution.







References
Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass-loss, nitrogen dynamics, and soil organic-matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot-Revue Can Bot 68(10):2201–2208
Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Change Biol 14(11):2636–2660. doi:10.1111/j.1365-2486.2008.01674.x
Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3):439–449. doi:10.2307/3546886
Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood. Org Geochem 33(9):1093–1109
Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5(1):1–25. doi:10.1139/a96-017
Berg B, McClaugherty C (2003) Plant litter. Decomposition, humus formation, carbon sequestration. Springer, Berlin
Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9(2):179–185. doi:10.1007/BF01398924
Calderon FJ, McCarty GW, Reeves JB (2006) Pyrolisis-MS and FT-IR analysis of fresh and decomposed dairy manure. J Anal Appl Pyrol 76(1–2):14–23. doi:10.1016/j.jaap.2005.06.009
Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York
Cleveland CC, Liptzin D (2007) C : n : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85(3):235–252. doi:10.1007/s10533-007-9132-0
Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82(3):229–240. doi:10.1007/s10533-006-9065-z
Cotrufo MF, del Galdo I, Piermatteo D (2009) Litter decomposition: concepts, methods and future perspectives. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, pp 76–90
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19(4):988–995. doi:10.1111/gcb.12113
Coûteaux M-M, Mousseau M, Célérier M-L, Bottner P (1991) Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61(1):54–64. doi:10.2307/3545406
Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37(12):2171–2179. doi:10.1016/j.soilbio.2005.03.019
Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262(3):221–229. doi:10.1016/s0048-9697(00)00524-6
Foereid B, Lehmann J, Major J (2011) Modeling black carbon degradation and movement in soil. Plant Soil 345(1–2):223–236. doi:10.1007/s11104-011-0773-3
Galletti GC, Reeves JB, Bloomfield J, Vogt KA, Vogt DJ (1993) Analysis of leaf and fine-root litter from a subtropical montane rain-forest by pyrolysis-gas chromatography mass-spectrometry. J Anal Appl Pyrol 27(1):1–14. doi:10.1016/0165-2370(93)80018-u
Gallo ME, Lauber CL, Cabaniss SE, Waldrop MP, Sinsabaugh RL, Zak DR (2005) Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Glob Change Biol 11(9):1514–1521. doi:10.1111/j.1365-2486.2005.001001.x
Grandy AS, Neff JC (2008) Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404(2–3):297–307. doi:10.1016/j.scitotenv.2007.11.013
Gray CM, Fierer N (2012) Impacts of nitrogen fertilization on volatile organic compound emissions from decomposing plant litter. Glob Change Biol 18(2):739–748. doi:10.1111/j.1365-2486.2011.02569.x
Haberhauer G, Rafferty B, Strebl F, Gerzabek MH (1998) Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 83(3–4):331–342. doi:10.1016/s0016-7061(98)00008-1
He Z, Mao J, Honeycutt CW, Ohno T, Hunt JF, Cade-Menun BJ (2009) Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques. Biol Fertil Soils 45(6):609–616. doi:10.1007/s00374-009-0369-8
Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon, sequestration in ecosystems: the role of stoichiometry. Ecology 85(5):1179–1192. doi:10.1890/02-0251
Johansson MB, Kogel I, Zech W (1986) Changes in the lignin fraction of spruce and pine needle litter during decomposition as studied by some chemical methods. Soil Biol Biochem 18(6):611–619. doi:10.1016/0038-0717(86)90084-2
Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31(7–8):711–725. doi:10.1016/s0146-6380(00)00046-2
Kaiser K, Kalbitz K (2012) Cycling downwards - dissolved organic matter in soils. Soil Biol Biochem 52:29–32. doi:10.1016/j.soilbio.2012.04.002
Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113(3–4):273–291. doi:10.1016/S0016-7061(02)00365-8
Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37(7):1319–1331. doi:10.1016/j.soilbio.2004.11.028
Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57(4):504–516. doi:10.1111/j.1365-2389.2006.00797.x
Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105(33):11823–11826. doi:10.1073/pnas.0802891105
Kiikkila O, Kitunen V, Spetz P, Smolander A (2012) Characterization of dissolved organic matter in decomposing Norway spruce and silver birch litter. Eur J Soil Sci 63(4):476–486. doi:10.1111/j.1365-2389.2012.01457.x
Klotzbucher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92(5):1052–1062
Knicker H (2011) Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quatern Int 243(2):251–263. doi:10.1016/j.quaint.2011.02.037
Lammers K, Arbuckle-Keil G, Dighton J (2009) MIR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biol Biochem 41(2):340–347. doi:10.1016/j.soilbio.2008.11.005
Landgraf D, Leinweber P, Makeschin F (2006) Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. J Plant Nutr Soil Sci 169(1):76–82. doi:10.1002/jpin.200521711
Legendre P (1999) Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments (vol 69, pg 1. Ecol Monogr 69(4):512
Li LJ, Zeng DH, Yu ZY, Fan ZP, Yang D, Liu YX (2011) Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. J Arid Environ 75(9):787–792. doi:10.1016/j.jaridenv.2011.04.009
Magill AH, Aber JD (2000) Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biol Biochem 32(5):603–613. doi:10.1016/s0038-0717(99)00187-x
Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16(4):1366–1379. doi:10.1111/j.1365-2486.2009.02044.x
Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196(1):79–91. doi:10.1111/j.1469-8137.2012.04225.x
Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63(3):621–626. doi:10.2307/1936780
Moorhead DL, Lashermes G, Sinsabaugh RL, Weintraub MN (2013) Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19. doi:10.1016/j.soilbio.2013.06.016
Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112. doi:10.1097/SS.0b013e3181981d9a
Oksanen J, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner (2013) Vegan Community Ecology Package, Version 2.0-10
Oren A, Chefetz B (2012) Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices. J Environ Qual 41(2):526–533. doi:10.2134/jeq2011.0362
Osono T, Takeda H (2005) Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20(1):51–58. doi:10.1007/s112840-004-0011-z
Preston CM, Trofymow JA, Sayer BG, Niu JN (1997) C-13 nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot-Rev Can Bot 75(9):1601–1613
Preston CM, Nault JR, Trofymow JA (2009a) Chemical changes during 6 years of decomposition of 11 litters in some canadian forest sites. Part 2. C-13 Abundance, solid-state c-13 nmr spectroscopy and the meaning of “lignin”. Ecosystems 12(7):1078–1102. doi:10.1007/s10021-009-9267-z
Preston CM, Nault JR, Trofymow JA, Smyth C, Grp CW (2009b) Chemical changes during 6 years of decomposition of 11 litters in some canadian forest sites. part 1. elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12(7):1053–1077. doi:10.1007/s10021-009-9266-0
Qualls RG, Haines BL (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72(1):254–266. doi:10.2307/1938919
Rowland AP, Roberts JD (1994) Lignin and cellulose fractionation in decomposition studies using acid-detergent fiber methods. Commun Soil Sci Plant Anal 25(3–4):269–277. doi:10.1080/00103629409369035
Rutherford DW, Wershaw RL, Rostad CE, Kelly CN (2012) Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy 46:693–701. doi:10.1016/j.biombioe.2012.06.026
Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124. doi:10.1016/j.soilbio.2012.04.005
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi:10.1038/nature10386
Singh N, Abiven S, Torn MS, Schmidt MWI (2012) Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9(8):2847–2857. doi:10.5194/bg-9-2847-2012
Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16(7):930–939. doi:10.1111/ele.12113
Soong JL, Calderon FJ, Betzen J, Cotrufo MF (2014) Quantification and FTIR characterization of dissolved organic carbon and total dissolved nitrogen leached from litter: a comparison of methods across litter types. Plant Soil 385:125–137. doi:10.1007/s11104-014-2232-4
Stewart CE, Zheng JY, Botte J, Cotrufo MF (2013) Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. Glob Change Biol Bioenergy 5(2):153–164. doi:10.1111/gcbb.12001
Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin JZ, Lawrence K, Hartley GR, Mason JA, McKenney DW (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Clim Change 38(1):1–13. doi:10.1023/a:1005306001055
Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry 56(1):1–26. doi:10.1023/a:1011934929379
Tappi (1981) Water solubility of wood and pulp. Test method T204 (or 207). Technical Association of the Pulp and Paper Industry, Atlanta
Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16(3):488–495. doi:10.1111/j.1472-4642.2010.00642.x
Van Soest PJ, Wine RH (1968) Determination of lignin and cellulose in acid-detergent fiber with permanganate. J Assoc Off Anal Chem 51(4):780
Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sc 74(10):3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2
Wang WJ, Dalal RC, Moody PW, Smith CJ (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35(2):273–284. doi:10.1016/s0038-0717(02)00274-2
White KE, Reeves JB III, Coale FJ (2011) Mid-infrared diffuse reflectance spectroscopy for the rapid analysis of plant root composition. Geoderma 167–68:197–203. doi:10.1016/j.geoderma.2011.08.009
Acknowledgments
This work would not have been possible without help from D. Rutherford at USGS, C. Rhodes and D. Pierson at USFS, K. Guilbert, D. Reuss, C. Pinney, J. Botte, and M. Jurich at Ecocore. The work was funded by the NSF-DEB grant #0918482, the NSF Graduate Research Fellowship Program and the NSF Research Experience for Teacher program. The analytical work was carried out at the EcoCore analytical services facility at Colorado State University (http://ecocore.nrel.colostate.edu/).
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Asmeret Asefaw Berhe.
Rights and permissions
About this article
Cite this article
Soong, J.L., Parton, W.J., Calderon, F. et al. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry 124, 27–44 (2015). https://doi.org/10.1007/s10533-015-0079-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10533-015-0079-2