, Volume 123, Issue 3, pp 363–377 | Cite as

Spatial controls on dissolved organic carbon in upland waters inferred from a simple statistical model

  • Donald T. Monteith
  • Peter A. Henrys
  • Chris D. Evans
  • Iain Malcolm
  • Ewan M. Shilland
  • M. G. Pereira


Dissolved organic carbon (DOC) concentrations in upland surface waters in many northern hemisphere industrialised regions are at their highest in living memory, provoking debate over their “naturalness”. Because of the implications for drinking water treatment and supply there is increasing interest in the potential for mitigation through local land management, and for forecasting the likely impact of environmental change. However, the dominant controls on DOC production remain unresolved, hindering the establishment of appropriate reference levels for specific locations. Here we demonstrate that spatial variation in long-term average DOC levels draining upland UK catchments is highly predictable using a simple multiple logistic regression model comprising variables representing wetland soil cover, rainfall, altitude, catchment sensitivity to acidification and current acid deposition. A negative relationship was observed between DOC concentration and altitude that, for catchments dominated by organo-mineral soils, is plausibly explained by the combined effects of changing net primary production and temperature-dependent decomposition. However, the magnitude of the altitude effect was considerably greater for catchments with a high proportion of wetland cover, suggesting that additional controls influence these sites such as impeded respiratory loss of carbon in wet soils and/or an increased susceptibility to water level drawdown at lower altitudes. The model suggests (1) that continuing reductions in sulphur deposition on acid sensitive organo-mineral soils, will drive further significant increases in DOC and, (2) given the differences in the magnitude of the observed altitude-DOC relationships, that DOC production from catchments with peat-dominated soils may be more sensitive to climate change than those dominated by mineral soils. However, given that mechanisms remain unclear, the latter warrants further investigation.


Dissolved organic carbon Dissolved organic matter Upland waters Acidification Recovery Climate change Land use 



This study was underpinned by time series data from two long-term monitoring networks, the UK Upland Waters Monitoring Network  (UWMN) and the UK Environmental Change Network (ECN) and was supported by the Natural Environment Research Council under the first ERA-EnvHealth call (FP7-ENV-2007-CSA-1.2.3-01). We are grateful to all in both networks who have maintained the excellent standards of data and sample collection and analysis over the years, to David Cooper, Matt Fry, Ron Smith and Chris Curtis for assistance in compiling the explanatory datasets, and to Ed Tipping for comments and suggestions. The UWMN is supported by the UK Department for Environment Food and Rural Affairs (DEFRA), NERC through the Centre for Ecology & Hydrology (CEH), the Department of the Environment (Northern Ireland), the Environment Agency (EA), the Forestry Commission (FC), Natural Resources Wales (NRW), the Scottish Environmental Protection Agency (SEPA), Scottish Natural Heritage (SNH) and the Welsh Government, the Scottish Government through Marine Scotland Science Pitlochry, Queen Mary University of London and ENSIS Ltd. at the Environmental Change Research Centre, University College London. We also thank four anonymous reviewers for their constructive suggestions for improvements to the manuscript.

Supplementary material

10533_2015_71_MOESM1_ESM.doc (270 kb)
Supplementary material 1 (DOC 270 kb)
10533_2015_71_MOESM2_ESM.doc (95 kb)
Supplementary material 2 (DOC 95 kb)


  1. Aitkenhead JA, Hope D, Billett MF (1999) The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrol Process 13:1289–1302. doi: 10.1002/(sici)1099-1085(19990615)13:8<1289:aid-hyp766>;2-m CrossRefGoogle Scholar
  2. Battarbee RW, Shilland EM, Kernan M, Monteith DT, Curtis CJ (2014) Recovery of acidified surface waters from acidification in the United Kingdom after twenty years of chemical and biological monitoring (1988–2008). Ecol Indic 37:267–273. doi: 10.1016/j.ecolind.2013.10.011 CrossRefGoogle Scholar
  3. Bauer JE, Bianchi TS (2011) 5.02—dissolved organic carbon cycling and transformation. In: Eric W, Donald M (eds) Treatise on estuarine and coastal science. Academic Press, Waltham, pp 7–67. doi: 10.1016/B978-0-12-374711-2.00502-7 CrossRefGoogle Scholar
  4. Chapman SJ, Thurlow M (1998) Peat respiration at low temperatures. Soil Biol Biochem 30:1013–1021. doi: 10.1016/S0038-0717(98)00009-1 CrossRefGoogle Scholar
  5. Clark JM, Ashley D, Wagner M, Chapman PJ, Lane SN, Evans CD, Heathwaite AL (2009) Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw-down. Glob Change Biol 15:794–807. doi: 10.1111/j.1365-2486.2008.01683.x CrossRefGoogle Scholar
  6. Clark JM et al (2010) The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci Total Environ 408:2768–2775. doi: 10.1016/j.scitotenv.2010.02.046 CrossRefGoogle Scholar
  7. Cooper DM (2005) Evidence of sulphur and nitrogen deposition signals at the United Kingdom waters monitoring network sites. Environ Pollut 137:41–54. doi: 10.1016/j.envpol.2004.12.030 CrossRefGoogle Scholar
  8. Creed IF, Beall FD, Clair TA, Dillon PJ, Hesslein RH (2008) Predicting export of dissolved organic carbon from forested catchments in glaciated landscapes with shallow soils. Glob Biogeochem Cycles. doi: 10.1029/2008gb003294 Google Scholar
  9. Curtis CJ, Simpson GL (2014) Trends in bulk deposition of acidity in the UK, 1988–2007, assessed using additive models. Ecol Indic 37:274–286. doi: 10.1016/j.ecolind.2012.10.023 CrossRefGoogle Scholar
  10. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  11. Dillon PJ, Molot LA (1997) Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resour Res 33:2591–2600. doi: 10.1029/97wr01921 CrossRefGoogle Scholar
  12. Dinsmore KJ, Billett MF, Dyson KE (2013) Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Glob Change Biol 19:2133–2148. doi: 10.1111/gcb.12209 CrossRefGoogle Scholar
  13. Ekstrom SM, Kritzberg ES, Kleja DB, Larsson N, Nilsson PA, Graneli W, Bergkvist B (2011) Effect of acid deposition on quantity and quality of dissolved organic matter in soil-water. Environ Sci Technol 45:4733–4739. doi: 10.1021/es104126f CrossRefGoogle Scholar
  14. Evans R (1997) Soil erosion in the UK initiated by grazing animals—a need for a national survey. Appl Geogr 17:127–141. doi: 10.1016/s0143-6228(97)00002-7 CrossRefGoogle Scholar
  15. Evans CD, Monteith DT, Harriman R (2001) Long-term variability in the deposition of marine ions at west coast sites in the UK acid waters monitoring network: impacts on surface water chemistry and significance for trend determination. Sci Total Environ 265:115–129. doi: 10.1016/s0048-9697(00)00653-7 CrossRefGoogle Scholar
  16. Evans CD et al (2007) Evidence against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophys Res Lett 34:L07407. doi: 10.1029/2007gl029431 Google Scholar
  17. Evans CD, Monteith DT, Fowler D, Cape JN, Brayshaw S (2011) Hydrochloric acid: an overlooked driver of environmental change. Environ Sci Technol 45:1887–1894. doi: 10.1021/es103574u CrossRefGoogle Scholar
  18. Evans CD et al (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Change Biol 18:3317–3331. doi: 10.1111/j.1365-2486.2012.02794.x CrossRefGoogle Scholar
  19. Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands, Nat Geosci, 4:895–900.
  20. Ferguson P, Lee JA (1983) Past and present sulfur pollution in the southern pennines. Atmos Environ 17:1131–1137. doi: 10.1016/0004-6981(83)90336-0 CrossRefGoogle Scholar
  21. Forsberg C (1992) Will an increased greenhouse impact in Fennoscandia give rise to more humic and coloured lakes? In: Salonen K, Kairesalo T, Jones RI (eds) Dissolved organic matter in lacustrine ecosystems, vol 73. Developments in hydrobiology. Springer, The Netherlands, pp 51–58. doi: 10.1007/978-94-011-2474-4_4 Google Scholar
  22. Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785. doi: 10.1038/35090628 CrossRefGoogle Scholar
  23. Gardner M (2008) Long-term proficiency testing for the UK acid waters monitoring network accredit. Qual Assur 13:255–260. doi: 10.1007/s00769-008-0367-9 CrossRefGoogle Scholar
  24. Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T (2013) Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem 58:115–126. doi: 10.1016/j.soilbio.2012.11.012 CrossRefGoogle Scholar
  25. Harrison AF et al (2008) Potential effects of climate change on DOC release from three different soil types on the Northern Pennines UK: examination using field manipulation experiments. Glob Change Biol 14:687–702. doi: 10.1111/j.1365-2486.2007.01504.x CrossRefGoogle Scholar
  26. Henrys PA et al (2011) Impacts of nitrogen deposition on vascular plants in Britain: an analysis of two national observation networks. Biogeosciences 8:3501–3518. doi: 10.5194/bg-8-3501-2011 CrossRefGoogle Scholar
  27. Holden J, Gascoign M, Bosanko NR (2007) Erosion and natural revegetation associated with surface land drains in upland peatlands. Earth Surf Proc Landf 32:1547–1557. doi: 10.1002/esp.1476 CrossRefGoogle Scholar
  28. Holden J, Smart RP, Dinsmore KJ, Baird AJ, Billett MF, Chapman PJ (2012) Natural pipes in blanket peatlands: major point sources for the release of carbon to the aquatic system. Glob Change Biol 18:3568–3580. doi: 10.1111/gcb.12004 CrossRefGoogle Scholar
  29. Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: Fluxes and processes. Environ Pollut 84:301–324. doi: 10.1016/0269-7491(94)90142-2 CrossRefGoogle Scholar
  30. Hruška J, Krám P, McDowell WH, Oulehle F (2009) Increased dissolved organic carbon (DOC) in central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environ Sci Technol 43:4320–4326. doi: 10.1021/es803645w CrossRefGoogle Scholar
  31. Larsen S, Andersen T, Hessen DO (2011) Predicting organic carbon in lakes from climate drivers and catchment properties. Glob Biogeochem Cycles, 25:GB3007. doi: 10.1029/2010gb003908
  32. McDowell WH, Wood T (1984) Podzolization: soil processes control dissolved organic carbon concentrations in stream water. Soil Sci 137:23–32CrossRefGoogle Scholar
  33. Mitchell G, McDonald AT (1992) Discolouration of water by peat following induced drought and rainfall simulation. Water Res 26:321–326. doi: 10.1016/0043-1354(92)90029-4 CrossRefGoogle Scholar
  34. Monteith DT et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–539. doi: 10.1038/nature06316 CrossRefGoogle Scholar
  35. Monteith DT, Evans CD (2005) The united kingdom acid waters monitoring network: a review of the first 15 years and introduction to the special issue. Environ Pollut 137:3–13Google Scholar
  36. Monteith DT, Evans CD, Henrys PA, Simpson GL, Malcolm IA (2014) Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008. Ecol Indic 37:287–303. doi: 10.1016/j.ecolind.2012.08.013 CrossRefGoogle Scholar
  37. Moody CS, Worrall F, Evans CD, Jones TG (2013) The rate of loss of dissolved organic carbon (DOC) through a catchment. J Hydrol 492:139–150. doi: 10.1016/j.jhydrol.2013.03.016 CrossRefGoogle Scholar
  38. Moore S, Evans CD, Page SE, Garnett MH, Jones T, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663.
  39. Moore TR, Jackson RJ (1989) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand: 2. Larry River. Water Resour Res 25:1331–1339. doi: 10.1029/WR025i006p01331 CrossRefGoogle Scholar
  40. Murphy JM et al (2009) UK climate projections science report: climate change projections. Met Office Hadley Centre, ExeterGoogle Scholar
  41. Oulehle F, Hruska J (2009) Rising trends of dissolved organic matter in drinking-water reservoirs as a result of recovery from acidification in the Ore Mts., Czech Republic. Environ Pollut 157:3433–3439. doi: 10.1016/j.envpol.2009.06.020 (Barking, Essex: 1987)CrossRefGoogle Scholar
  42. Palmer SM, Clark JM, Chapman PJ, van der Heijden GMF, Bottrell SH (2013) Effects of acid sulphate on DOC release in mineral soils: the influence of SO42—retention and Al release. Eur J Soil Sci 64:537–544. doi: 10.1111/ejss.12048 CrossRefGoogle Scholar
  43. Rosén P, Bindler R, Korsman T, Mighall T, Bishop K (2011) The complementary power of pH and lake-water organic carbon reconstructions for discerning the influences on surface waters across decadal to millennial time scales. Biogeosciences 8:2717–2727. doi: 10.5194/bg-8-2717-2011 CrossRefGoogle Scholar
  44. RoTAP (2012) Review of transboundary air pollution: acidification, eutrophication, ground level ozone and heavy metals in the UKGoogle Scholar
  45. Rowe EC et al (2014) Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter. Environ Pollut 184:271–282. doi: 10.1016/j.envpol.2013.08.023 CrossRefGoogle Scholar
  46. SCAMP (2013) United utilities. SCAMP monitoring—key messages. Penny Anderson Associates Limited, BuxtonGoogle Scholar
  47. Skjelkvåle BL et al (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ Pollut 137:165–176. doi: 10.1016/j.envpol.2004.12.023 CrossRefGoogle Scholar
  48. Smith R, Fowler D (2001) Uncertainty in estimation of wet deposition of sulphur water. Air Soil Pollut 1:341–353. doi: 10.1023/a:1013144231312 CrossRefGoogle Scholar
  49. Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmos Environ 34:3757–3777. doi: 10.1016/s1352-2310(99)00517-8 CrossRefGoogle Scholar
  50. Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–1219CrossRefGoogle Scholar
  51. Stevens CJ, Dise NB, Gowing DJG, Mountford JO (2006) Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Glob Change Biol 12:1823–1833CrossRefGoogle Scholar
  52. Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature, 464:1178–1181.
  53. Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers, DordrechtCrossRefGoogle Scholar
  54. Tipping E, Billett MF, Bryant CL, Buckingham S, Thacker SA (2010) Sources and ages of dissolved organic matter in peatland streams: evidence from chemistry mixture modelling and radiocarbon data. Biogeochemistry 100:121–137. doi: 10.1007/s10533-010-9409-6 CrossRefGoogle Scholar
  55. Tipping E, Rowe EC, Evans CD, Mills RTE, Emmett BA, Chaplow JS, Hall JR (2012) N14C: a plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition. Ecol Model 247:11–26. doi: 10.1016/j.ecolmodel.2012.08.002 CrossRefGoogle Scholar
  56. Toberman H, Evans CD, Freeman C, Fenner N, White M, Emmett BA, Artz RRE (2008) Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil Biol Biochem 40:1519–1532. doi: 10.1016/j.soilbio.2008.01.004 CrossRefGoogle Scholar
  57. Vrba J et al (2003) Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian forest (central Europe). Sci Total Environ 310:73–85. doi: 10.1016/S0048-9697(02)00624-1 CrossRefGoogle Scholar
  58. Weyhenmeyer GA, Karlsson J (2009) Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54:2513–2519. doi: 10.4319/lo.2009.54.6_part_2.2513 CrossRefGoogle Scholar
  59. Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, Grossman E, Jackson CJ (2003) Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the upper Great Lakes region and selected regions globally. Limnol Oceanogr 48:2321–2334. doi: 10.4319/lo.2003.48.6.2321 CrossRefGoogle Scholar
  60. Yallop AR, Clutterbuck B (2009) Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity. Sci Total Environ 407:3803–3813. doi: 10.1016/j.scitotenv.2009.03.012 CrossRefGoogle Scholar
  61. Zhang J et al (2010) Long-term patterns of dissolved organic carbon in lakes across eastern Canada: evidence of a pronounced climate effect. Limnol Oceanogr 55:30–42. doi: 10.4319/lo.2010.55.1.0030 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Donald T. Monteith
    • 1
  • Peter A. Henrys
    • 1
  • Chris D. Evans
    • 2
  • Iain Malcolm
    • 3
  • Ewan M. Shilland
    • 4
  • M. G. Pereira
    • 1
  1. 1.NERC Centre for Ecology & Hydrology, Lancaster Environment CentreLancasterUK
  2. 2.NERC Centre for Ecology & Hydrology, Environment Centre WalesBangorUK
  3. 3.Marine Scotland Freshwater LaboratoryPitlochryScotland, UK
  4. 4.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations