, Volume 120, Issue 1–3, pp 295–305 | Cite as

Microbial controls on DMSP degradation and DMS formation in the Sargasso Sea

  • Maria Vila-Costa
  • Johanna M. Rinta-Kanto
  • Rachel S. Poretsky
  • Shulei Sun
  • Ronald P. Kiene
  • Mary Ann Moran


Bacterial degradation of dimethylsulfoniopropionate (DMSP) represents one of the main sources of the climatically–active trace gas dimethylsulfide (DMS) in the upper ocean. Short-term enrichment studies to stimulate specific pathways of DMSP degradation in oligotrophic waters from the Sargasso Sea were used to explore regulatory connections between the different bacterial DMSP degradation steps and determine potential biological controls on DMS formation in the open ocean. Experiments were conducted with surface water at the BATS station in the western North Atlantic Ocean. We added selected organic substrates (25 nmol L−1 final concentration) to induce different steps of DMSP degradation in the microbial community, and then measured DMSP dynamics (assimilation and turnover rates), DMS yields (using 35sulfur-DMSP tracer), and bacterial production rates. In most treatments, the main fate of consumed S-DMSP was excretion as a non-volatile S product. 35S-DMSP tracer turnover rates (accumulation + assimilation + excretion of transformed products as DMS or others) increased upon addition of DMSP and glucose, but not acrylate, methymercaptopropionate (MMPA), methanethiol, DMS or glycine betaine. DMS yields from 35S-DMSP never exceeded 16 % except in a short term DMSP enrichment, for which the yield reached 45 % (±17 %). Results show that availability of non-sulfur containing labile C sources (glucose, acrylate) decreased bacterial DMS production while stimulating bacterial heterotrophic production, and suggest an influence of bacterial sulfur demand in controlling DMS-yielding pathways. However, regulatory effects on 35S-DMSP fate were not consistent across all reduced sulfur compounds (i.e., methanethiol or MMPA), and may reflect alternate roles of DMSP as a bacterial energy source and osmolyte.


Dimethylsulfoniopropionate DMSP Dimethylsulfide DMS Sargasso sea Bacterioplankton 



We thank John Dacey and Dede Toole for the invitation to join two BATS cruises in the Sargasso Sea; Naomi Levine, Aimee Neely, Dacha Atienza and Vanessa Varaljay for helpful advice; and Daniela del Valle for DMSP analyses and fruitful discussions. The captain and crew of the R/V Atlantic explorer, and the BATS team, especially Mike Lomas and Steven Bell, are gratefully acknowledged. This project was funded by 7th Framework Programme (FP7) Marie Curie Fellowship (GenS FP7-MC-IOF-219811) and a fellowship”Beatriu de Pinós” from the Catalan Government (to MVC), the Gordon and Betty Moore Foundation, and the National Science Foundation (OCE0724017 to MAM and RPK, OCE-0928968 to RPK and OCE0425166 to J. Dacey and D. Toole).


  1. Biers EJ, Sun S, Howard EC (2009) Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome. Appl Environ Microbiol 75(7):2221–2229. doi: 10.1128/aem.02118-08 CrossRefGoogle Scholar
  2. Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Otero MP, Vergin K, Wheeler BR (2002) Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30:19–36CrossRefGoogle Scholar
  3. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  4. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697CrossRefGoogle Scholar
  5. Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10(3):757–767CrossRefGoogle Scholar
  6. González JM, Kiene RP, Moran MA (1999) Transformations of sulfur compounds by an abundant lineage of marine bacteria in the a-subclass of the class proteobacteria. Appl Environ Microbiol 65:3810–3819Google Scholar
  7. Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, Ye W, González JM, Mace K, Joye SB, Kiene RP, Whitman WB, Moran MA (2006) Bacterial taxa that limit sulfur flux from the ocean. Science 314:649–652CrossRefGoogle Scholar
  8. Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman E, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington, pp 167–182CrossRefGoogle Scholar
  9. Kiene RP, Gerard G (1995) Evaluation of glycine betaine as an inhibitor of dissolved dimethylsulphoniopropionate degradation in marine waters. Mar Ecol Prog Ser 128:121–131CrossRefGoogle Scholar
  10. Kiene RP, Linn LJ (2000a) Distribution and turnover of dissolved DMSP and its relationship with bacterial production in the Gulf of Mexico. Limnol Oceanogr 45:849–861CrossRefGoogle Scholar
  11. Kiene RP, Linn LJ (2000b) The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim Cosmochim Acta 64:2797–2810CrossRefGoogle Scholar
  12. Kiene RP, Slezak D (2006) Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol Oceanogr Methods 4:80–95CrossRefGoogle Scholar
  13. Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224CrossRefGoogle Scholar
  14. Kirchman DL (1993) Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In: Kemp PF et al (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca RatonGoogle Scholar
  15. Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol 41:21–53CrossRefGoogle Scholar
  16. Ledyard KM, Dacey JWH (1996) Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnol Oceanogr 41:33–40CrossRefGoogle Scholar
  17. Levasseur M, Michaud S, Egge J, Cantin G, Nejstgaard J, Sanders R, Fernandez E, Solberg P, Heimdal B, Gosselin M (1996) Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing. Mar Biol 126:609–618CrossRefGoogle Scholar
  18. Levine NM, Varaljay VA, Toole DA, Dacey JWH, Doney SC, Moran MA (2012) Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea. Environ Microbiol 14(5):1210–1223CrossRefGoogle Scholar
  19. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659. doi: 10.1093/bioinformatics/btl158 CrossRefGoogle Scholar
  20. Lizotte M, Levasseur M, Kudo I, Suzuki K, Tsuda A, Kiene RP, Scarratt MG (2009) Iron-induced alterations of bacterial DMSP metabolism in the western subarctic Pacific during SEEDS-II. Deep-Sea Res Part II 56(26):2889–2898CrossRefGoogle Scholar
  21. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237:452–453CrossRefGoogle Scholar
  22. Malmstrom RR, Kiene RP, Kirchman DL (2004) Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol Oceanogr 49(2):597–606CrossRefGoogle Scholar
  23. Merzouk A, Levasseur M, Scarratt MG, Michaud S, Rivkin RB, Hale MS, Kiene RP, Price NM, Li WKW (2006) DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific — Part II: Biological cycling. Deep-Sea Res Part II 53:2370–2383Google Scholar
  24. Moran MA, Reisch CR, Kiene RP, Whitman WB (2012) Genomic insights into bacterial DMSP transformations. Ann Rev Mar Sci 4:523–542CrossRefGoogle Scholar
  25. Quinn PK, Bates TS (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480(7375):51–56CrossRefGoogle Scholar
  26. Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 7(9):668–669CrossRefGoogle Scholar
  27. Reisch CR, Moran MA, Whitman WB (2008) Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J Bacteriol 190(24):8018–8024. doi: 10.1128/jb.00770-08 CrossRefGoogle Scholar
  28. Reisch CR, Moran MA, Whitman WB (2011a) Bacterial catabolism of dimethylsulfoniopropionate. Front Microbiol. doi: 10.3389/fmicb.2011.00172 Google Scholar
  29. Reisch CR, Stoudemayer MJ, Varaljay VA, Amster IJ, Moran MA, Whitman WB (2011b) Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature 473(7346):208–211CrossRefGoogle Scholar
  30. Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA (2012) Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol 14(1):228–239CrossRefGoogle Scholar
  31. Ruiz-González C, Galí M, Gasol JM, Simó R (2012) Sunlight effects on the DMSP-sulfur and leucine assimilation activities of polar heterotrophic bacterioplankton. Biogeochemistry 110:57–74CrossRefGoogle Scholar
  32. Simó R, Pedrós-Alió C (1999) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402:396–399CrossRefGoogle Scholar
  33. Simó R, Vila-Costa M, Alonso-Saez L, Cardelus C, Guadayol O, Vázquez-Domínguez E, Gasol JM (2009) Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site. Aquat Microb Ecol 57(1):43–55. doi: 10.3354/ame01325 CrossRefGoogle Scholar
  34. Slezak D, Kiene RP, Toole DA, Simó R, Kieber DJ (2007) Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater. Aquat Sci 69(3):377–393CrossRefGoogle Scholar
  35. Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114Google Scholar
  36. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103(32):12115–12120. doi: 10.1073/pnas.0605127103 CrossRefGoogle Scholar
  37. Stefels J, VanBoekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol Prog Ser 97:11–18CrossRefGoogle Scholar
  38. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320CrossRefGoogle Scholar
  39. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson ARJ, Malin G, Steinke M, Johnston AWB (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315(5812):666–669. doi: 10.1126/science.1135370 CrossRefGoogle Scholar
  40. Todd JD, Curson ARJ, Dupont CL, Nicholson P, Johnston AWB (2009) The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol 11(6):1376–1385CrossRefGoogle Scholar
  41. Todd JD, Curson ARJ, Kirkwood M, Sullivan MJ, Green RT, Johnston AWB (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13(2):427–438. doi: 10.1111/j.1462-2920.2010.02348.x CrossRefGoogle Scholar
  42. Todd JD, Kirkwood M, Newton-Payne S, Johnston AWB (2012) DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J 6(1):223–226CrossRefGoogle Scholar
  43. Toole DA, Slezak D, Kiene RP, Kieber DJ, Siegel DA (2006) Effects of solar radiation on dimethylsulfide cycling in the western Atlantic Ocean. Deep Sea Res Part I 53(1):136–153CrossRefGoogle Scholar
  44. Vallina SM, Simó R (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315(5811):506–508CrossRefGoogle Scholar
  45. Vila-Costa M, Simó R, Harada H, Gasol JM, Slezak D, Kiene RP (2006) Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314:652–654CrossRefGoogle Scholar
  46. Vila-Costa M, Pinhassi J, Alonso C, Pernthaler J, Simó R (2007) An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean. Environ Microbiol 9:2451–2463CrossRefGoogle Scholar
  47. Vila-Costa M, Kiene RP, Simó R (2008a) Seasonal variability of the dynamics of dimethylated sulfur compounds in a coastal northwest Mediterranean site. Limnol Oceanogr 53:198–211CrossRefGoogle Scholar
  48. Vila-Costa M, Simó R, Alonso-Sáez L, Pedrós-Alió C (2008b) Number and phylogenetic affiliation of bacteria assimilating dimethylsulfoniopropionate and leucine in the ice-covered coastal Arctic Ocean. J Mar Syst 74:957–963CrossRefGoogle Scholar
  49. Vila-Costa M, Rinta-Kanto JM, Sun S, Sharma S, Poretsky R, Moran MA (2010) Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate. ISME J 4(11):1410–1420CrossRefGoogle Scholar
  50. Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68(12):5804–5815CrossRefGoogle Scholar
  51. Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2002) Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res Part II 49:3017–3038CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maria Vila-Costa
    • 1
    • 2
    • 3
  • Johanna M. Rinta-Kanto
    • 1
    • 5
  • Rachel S. Poretsky
    • 1
    • 6
  • Shulei Sun
    • 1
    • 7
  • Ronald P. Kiene
    • 4
  • Mary Ann Moran
    • 1
  1. 1.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  2. 2.Limnological Observatory of the Pyrenees (LOOP) – Department of EcologyUniversity of BarcelonaBarcelonaSpain
  3. 3.Department of Environmental ChemistryIDAEA-CSICBarcelonaSpain
  4. 4.Department of Marine SciencesUniversity of South AlabamaMobileUSA
  5. 5.Division of Microbiology, Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  6. 6.Department of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA
  7. 7.Center for Research in Biological SystemsUniversity of California San DiegoLa JollaUSA

Personalised recommendations