, Volume 123, Issue 1–2, pp 83–98 | Cite as

Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil

  • D. O. BreeckerEmail author
  • S. Bergel
  • M. Nadel
  • M. M. Tremblay
  • R. Osuna-Orozco
  • T. E. Larson
  • Z. D. Sharp


A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO2 is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO2 and SOM (\(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\)) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ13C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C3 vegetation and compared the δ13C values of soil-respired CO2 to the δ13C values of bulk SOM. Our results show near-zero \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values (−0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO2. Significantly more negative \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values are required to explain the typical δ13C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ13C profiles result from either (1) a process other than carbon isotope fractionation between CO2 and SOM during soil respiration or (2) \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values that become increasingly negative as SOM matures.


Soil Organic matter CO2 Carbon isotopes Incubation Fractionation 



We thank the Katharine Ordway Natural History Study Area for access and D. Fortner for logistical help. Comments from three anonymous reviewers helped substantially improve the manuscript. NSF-REU 0852029 supported this research. Data reported in this paper are available from the International Soil Carbon Network (

Supplementary material

10533_2014_54_MOESM1_ESM.docx (131 kb)
Supplementary material 1 (DOCX 131 kb)
10533_2014_54_MOESM2_ESM.docx (95 kb)
Supplementary material 2 (DOCX 94 kb)


  1. Abraham WR, Hesse C, Pelz O (1998) Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl Environ Microbiol 64:4202–4209Google Scholar
  2. Acton P, Fox J, Campbell E, Rowe H, Wilkinson M (2013) Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J Geophys Res 118:1532–1545CrossRefGoogle Scholar
  3. Ågren GI, Bosatta E, Balesdent J (1996) Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J 60:1121–1126CrossRefGoogle Scholar
  4. Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biol Biochem 32:699–706CrossRefGoogle Scholar
  5. Balesdent J, Girardin C, Mariotti A (1993) Site-related d13C of tree leaves and soil organic matter in a temperate forest. Ecology 74:1713–1721CrossRefGoogle Scholar
  6. Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53(3):215–230CrossRefGoogle Scholar
  7. Ball DF (1964) Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J Soil Sci 15:84–92CrossRefGoogle Scholar
  8. Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98CrossRefGoogle Scholar
  9. Bowen, G.J., and Beerling, D.J. (2004) An integrated model for soil organic carbon and CO2: Implications for paleosol carbonate pCO2 paleobarometry. Global Biogeochemical Cycles 18: GB1026Google Scholar
  10. Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40CrossRefGoogle Scholar
  11. Breecker DO (2013) Quantifying and understanding the uncertainty of atmospheric CO2 concentrations determined from calcic paleosols. Geochem Geophys Geosyst 14:3210–3220CrossRefGoogle Scholar
  12. Breecker D, Sharp ZD (2008) A field and laboratory method for monitoring the concentration and stable isotope composition of soil CO2. Rapid Commun Mass Spectrom 22:449–454CrossRefGoogle Scholar
  13. Breecker D, Sharp ZD, McFadden L (2009) Seasonal bias in the formation and stable isotope composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geol Soc Am Bull 121:630–640CrossRefGoogle Scholar
  14. Breecker DO, McFadden LD, Sharp ZD, Martinez M, Litvak ME (2012) Deep autotrophic soil respiration in shrubland and woodland ecosystems in central New Mexico. Ecosystems 15:83–96CrossRefGoogle Scholar
  15. Brüggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489CrossRefGoogle Scholar
  16. Brunn M, Spielvogel S, Sauer T, Oelmann Y (2014) Temperature and precipitaion effects on d13C depth profiles in SOM under temperate beech forests. Geoderma 235–236:146–153CrossRefGoogle Scholar
  17. Cerling TE (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400CrossRefGoogle Scholar
  18. Cerling TE (1992) Use of carbon isotopes in paleosols as an indicator of the p(CO2) of the paleoatmosphere. Global Biogeochem Cycles 6:307–314CrossRefGoogle Scholar
  19. Cerling TE (1999) Stable carbon isotopes in palaeosol carbonates. In: Thiry M, Coincon RS (eds) Palaeoweathering, palaeosurfaces and related continental deposits, vol. 27. Special Publication of the International Association of Sedimentologists, p 43–60Google Scholar
  20. Cotton JM, Sheldon ND (2012) New constraints on using paleosols to reconstruct atmospheric pCO2. Geol Soc Am Bull 124:1411–1423CrossRefGoogle Scholar
  21. Crow SE, Sulzman EW, Rugh WD, Bowden RD, Lajtha K (2006) Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools. Soil Biol Biochem 38:3279–3291CrossRefGoogle Scholar
  22. Deines P, Langmuir D, Harmon RS (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta 38:1147–1164CrossRefGoogle Scholar
  23. Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422CrossRefGoogle Scholar
  24. Ekblad A, Högberg P (2000) Analysis of δ13C of CO2 distinguishes between microbial respiration of added C4-sucrose and other soil respiration in a C3-ecosystem. Plant Soil 219:197–209CrossRefGoogle Scholar
  25. Ekblad A, Nyberg G, Högberg P (2002) 13C-discrimination during microbial respiration of added C3-, C4 and 13C-labelled sugars to a C3-forest soil. Oecologia 131:245–249CrossRefGoogle Scholar
  26. Elzein A, Balesdent J (1995) Mechanistic simulaion of vertical distribution of carbon concentrations and residence times in soils. Soil Sci Soc Am J 59:1328–1335CrossRefGoogle Scholar
  27. Feng X (2002) A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Global Biogeochem Cycles 16:1119CrossRefGoogle Scholar
  28. Feng X, Peterson JC, Quideau SA, Virginia RA, Graham RC, Sonder LJ, Chadwick OA (1999) Distribution, accumulation and fluxes of soil carbon in four monoculture lysimeters at San Dimas Experimental Forest, California. Geochim Cosmochim Acta 63:1319–1333CrossRefGoogle Scholar
  29. Formánek P, Ambus P (2004) Assessing the use of d13C natural abundance in the separation of root and microbial respiration in a Danish beench (Fagus sylvatica L.) forest. Rapid Commun Mass Spectrom 18:897–902CrossRefGoogle Scholar
  30. Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65CrossRefGoogle Scholar
  31. Garten CT Jr, Cooper LW, Post WMI, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the southern Appalachain Mountains. Ecology 81:1108–1119CrossRefGoogle Scholar
  32. Gaudinski JB, Trumbore SE, Davidson EA, Zheng S (2000) Soil carbon cycling in a temperature forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69CrossRefGoogle Scholar
  33. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contribution to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146CrossRefGoogle Scholar
  34. Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353–360CrossRefGoogle Scholar
  35. Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Science of the United States of America 96:8534–8539CrossRefGoogle Scholar
  36. Kaiser K, Guggenberger G, Zech W (2001) Isotopic fractionation of dissolved organic carbon in shallow forest soils as affectd by sorption. Eur J Soil Sci 52:585–597CrossRefGoogle Scholar
  37. Keeling CD (1979) The Suess effect: 13Carbon -14Carbon interrelations. Environ Int 2:229–300CrossRefGoogle Scholar
  38. Larson TE, Breecker DO (2014) Adsorption isotope effects for carbon dioxide from illite- and quartz-packed column experiments. Chemical Geology 370:58–68CrossRefGoogle Scholar
  39. Lerch TZ, Nunan N, Dignac MF, Chenu C, Mariotti A (2011) Variations in microbial isotopic fractionation during soil organic matter decomposition. Biogeochemistry 106:5–21CrossRefGoogle Scholar
  40. Lundberg P, Ekblad A, Nilsson M (2001) 13C NMR spectroscopy studies of forest soil microbial activity: glucose uptake and fatty acid biosynthesis. Soil Biol Biochem 33:621–632CrossRefGoogle Scholar
  41. Mueller CW, Gutsch M, Kothieringer K, Leifield J, Rethemeyer J, Brueggemann N, Kögel-Knabner I (2014) Bioavailability of isotopic composition of CO2 released from incubated soil organic matter fractions. Soil Biol Biochem 69:168–178CrossRefGoogle Scholar
  42. Natelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 anundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640CrossRefGoogle Scholar
  43. Poage MA, Feng X (2004) A theoretical analysis of steady state d13C profiles of soil organic matter. Global Biogeochem Cycles 18:GB2016CrossRefGoogle Scholar
  44. Santrucková H, Bird MI, Lloyd J (2000) Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114CrossRefGoogle Scholar
  45. Stevenson BA, Kelly EF, McDonald EV, Busacca AJ (2005) The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124:37–47CrossRefGoogle Scholar
  46. Torn MS, Lapenis AG, Timofeev A, Fischer ML, Babikov BV, Harden JW (2002) Organic carbon and carbon isotope in modern and 100-year-old-soil archives of the Russian steppe. Glob Change Biol 8:941–953CrossRefGoogle Scholar
  47. Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon contraints on belowground C dynamics. Ecol Appl 10:399–411CrossRefGoogle Scholar
  48. Tu K, Dawson T (2005) Partitioning ecosystem respiration using stable carbon isotope analyses of CO2. In: Flanagan LB, Ehleringer JR, Pataki DE (eds) Stables isotopes and biosphere-atmosphere interaction: processes and biology controls. Academic Press, London, pp 125–153CrossRefGoogle Scholar
  49. Van Vuuren MMI, Robinson D, Scrimgeour CM, Raven A, Fitter AH (2000) Decomposition of 13C-labelled wheat root systems following growth at different CO2 concentrations. Soil Biol Biochem 32:403–413CrossRefGoogle Scholar
  50. Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microogranisms-soil interface: a review and outlook for partioning studies. Soil Biol Biochem 42:1372–1384CrossRefGoogle Scholar
  51. Werth M, Subboina I, Kuzyakov Y (2006) Three-source partitioning of CO2 efflux from soil planted with maize by 13C natural abundance fails due to inactive microbial biomass. Soil Biol Biochem 38:2772–2781CrossRefGoogle Scholar
  52. Wynn JG (2007) Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeogr Palaeoclimatol Palaeoecol 251:437–448CrossRefGoogle Scholar
  53. Wynn JG, Bird IM, Wong VNL (2005) Rayleigh distillation and the depth profile of 12C/13C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia. Geochim Cosmochim Acta 69:1961–1973CrossRefGoogle Scholar
  54. Wynn JG, Harden JW, Fries TL (2006) Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma 131:89–109CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • D. O. Breecker
    • 1
    Email author
  • S. Bergel
    • 1
  • M. Nadel
    • 1
    • 2
  • M. M. Tremblay
    • 1
    • 3
  • R. Osuna-Orozco
    • 4
    • 5
  • T. E. Larson
    • 1
  • Z. D. Sharp
    • 5
  1. 1.The Department of Geological SciencesThe University of Texas at AustinAustinUSA
  2. 2.Department of GeologyMacalester CollegeSaint PaulUSA
  3. 3.Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyUSA
  4. 4.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  5. 5.The Department of Earth and Planetary SciencesThe University of New MexicoAlbuquerqueUSA

Personalised recommendations