, Volume 118, Issue 1–3, pp 225–241 | Cite as

Food and feed trade as a driver in the global nitrogen cycle: 50-year trends

  • Luis LassalettaEmail author
  • Gilles Billen
  • Bruna Grizzetti
  • Josette Garnier
  • Allison M. Leach
  • James N. Galloway


The alteration of the global nitrogen (N) cycle is creating severe environmental impacts. This paper analyses the increasing importance of the international trade of food and feed in the alteration of the N cycle at the global scale in two ways. First, using the information on food and feed trade across world countries, and assuming that N constitutes 16 % of proteins, we quantified the N annually traded in the period 1961–2010. We observed that in that period, the amount of N traded between countries has increased eightfold (from 3 to 24 TgN) and now concerns one-third of the total N in world crop production, with the largest part corresponding to animal feed. Secondly, we divided the world into 12 regions and studied the N transfer among them in two reference years: 1986 and 2009. The N flow among these regions has dramatically intensified during this period not only due to an increase in the population but also in the proportion of animal protein in the diet of some countries. Nowadays, in terms of proteins and N, a small number of countries (e.g., USA, Argentina and Brazil) are feeding the rest of the world. At the global scale the system is becoming less efficient because of the disconnection between crop and livestock production across specialised regions, increasing the environmental impacts. As human diet is an additional clear driver of the observed changes, the solutions must rely not only on the producers, but also on the consumers. The results of our study provide new insights into the food dependency relationships between the different regions of the world as well as the growing importance of international food and feed trade in the global N cycle.


International trade Global nitrogen cycle Crop production Livestock production Human diet 



We wish to thank the FIRE (Fédération Ile de France de Recherche en Environnement, CNRS and UPMC) and the Research in Paris Programme (Paris City), within which Luis Lassaletta worked in France. We are grateful to Eduardo Aguilera for its comments and suggestions on the manuscript. We thank Javier Castrillo who developed several computer routines for the data management. We sincerely acknowledge the anonymous referees for their constructive comments and suggestions.

Supplementary material

10533_2013_9923_MOESM1_ESM.xlsx (30 kb)
Supplementary Material S1 (XLSX 30 kb)
10533_2013_9923_MOESM2_ESM.pdf (2.4 mb)
Supplementary Fig. S2 (PDF 2457 kb)
10533_2013_9923_MOESM3_ESM.xlsx (36 kb)
Supplementary Table S3a (XLSX 35 kb)
10533_2013_9923_MOESM4_ESM.xlsx (12 kb)
Supplementary Table S3b (XLSX 12 kb)
10533_2013_9923_MOESM5_ESM.pdf (18.6 mb)
Supplementary Fig. S4 (PDF 19046 kb)


  1. Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2008) Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environ Sci Technol 42:822–830CrossRefGoogle Scholar
  2. Anderson K (2010) Globalization’s effects on world agricultural trade, 1960–2050. Philos Trans R Soc B 365:3007–3021CrossRefGoogle Scholar
  3. Asmala E, Saikku L, Vienonen S (2011) Import-export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage area. Sci Total Environ 409:4917–4922CrossRefGoogle Scholar
  4. Austin AT, Pineiro G, Gonzalez-Polo M (2006) More is less: agricultural impacts on the N cycle in Argentina. Biogeochemistry 79:45–60CrossRefGoogle Scholar
  5. Bellarby J, Tirado R, Leip A, Weiss F, Lesschen JP, Smith P (2013) Livestock greenhouse gas emissions and mitigation potential in Europe. Glob Change Biol 19:3–18CrossRefGoogle Scholar
  6. Billen G, Beusen A, Bouwman L, Garnier J (2010) Anthropogenic nitrogen autotrophy and heterotrophy of the world’s watersheds: past, present, and future trends. Glob Biogeochem Cycle 24:GB0A11Google Scholar
  7. Billen G, Garnier J, Thieu V, Silvestre M, Barles S, Chatzimpiros P (2012) Localising the nitrogen imprint of the Paris food supply: the potential of organic farming and changes in human diet. Biogeosciences 9:607–616CrossRefGoogle Scholar
  8. Billen L, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling N transfers at regional watershed and global scales. Philos Trans R Soc B 368:20130123CrossRefGoogle Scholar
  9. Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2011) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1012878108 Google Scholar
  10. Burke M, Oleson K, McCullough E, Gaskell J (2009) A global model tracking water, nitrogen, and land inputs and virtual transfers from industrialized meat production and trade. Environ Model Assess 14:179–193CrossRefGoogle Scholar
  11. Bustamante MMC, Medina E, Asner GP, Nardoto GB, Garcia-Montiel DC (2006) Nitrogen cycling in tropical and temperate savannas. Biogeochemistry 79:209–237CrossRefGoogle Scholar
  12. Campling P, Terres JM, Vande Walle S, Van Orshoven J, Crouzet P (2005) Estimation of nitrogen balances from agriculture for EU-15: spatialisation of estimates to river basins using the CORINE Land Cover. Phys Chem Hearth 30:34Google Scholar
  13. Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue WA (2008) LCA of soybean meal. Int J Life Cycle Assess 13:240–254CrossRefGoogle Scholar
  14. DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181CrossRefGoogle Scholar
  15. Erb K-H, Krausmann F, Lucht W, Haberl H (2009) Embodied HANPP: mapping the spatial disconnect between global biomass production and consumption. Ecol Econ 69:328–334CrossRefGoogle Scholar
  16. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639CrossRefGoogle Scholar
  17. FAO (2011) Food balance sheets. A handbook. FAO, RomeGoogle Scholar
  18. Filoso S, Martinelli LA, Howarth RW, Boyer EW, Dentener F (2006) Human activities changing the nitrogen cycle in Brazil. Biogeochemistry 79:61–89CrossRefGoogle Scholar
  19. Foley JA, De Fries R, Asner GP, Barford C, Bonana G, Carpenter SR, Stuart Chapin F, Coes MT, Daily GC, Gibbd HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefGoogle Scholar
  20. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130164CrossRefGoogle Scholar
  21. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356CrossRefGoogle Scholar
  22. Galloway JN, Burke M, Bradford GE, Naylor R, Falcon W, Chapagain AK, Gaskell JC, McCullough E, Mooney HA, Oleson KLL, Steinfeld H, Wassenaar T, Smil V (2007) International trade in meat: the tip of the pork chop. Ambio 36:622–629CrossRefGoogle Scholar
  23. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892CrossRefGoogle Scholar
  24. Gerber P, Menzi H (2006) Nitrogen losses from intensive livestock farming systems in Southeast Asia: a review of current trends and mitigation options. Int Congr Ser 1293:253–261CrossRefGoogle Scholar
  25. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  26. Grizzetti B, Bouraoui F, Aloe A (2012) Changes of nitrogen and phosphorus loads to European seas. Glob Change Biol 18:769–782CrossRefGoogle Scholar
  27. Grizzetti B, Pretato U, Lassaletta L, Billen G, Garnier J (2013) The contribution of food waste to global and European nitrogen pollution. Environ Sci Policy 33:186–195CrossRefGoogle Scholar
  28. Grote U, Craswell E, Vlek P (2005) Nutrient flows in international trade: ecology and policy issues. Environ Sci Policy 8:439–451CrossRefGoogle Scholar
  29. Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, van de Steeg J, Lynam J, Rao PP, Macmillan S, Gerard B, McDermott J, Seré C, Rosegrant M (2010) Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327:822–825CrossRefGoogle Scholar
  30. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  31. Hou Y, Ma L, Gao ZL, Wang FH, Sims JT, Ma WQ, Zhang FS (2013) The driving forces for nitrogen and phosphorus flows in the food chain of China, 1980 to 2010. J Environ Qual 42:962–971CrossRefGoogle Scholar
  32. Houlton B, Boyer E, Finzi A, Galloway J, Leach A, Liptzin D, Melillo J, Rosenstock T, Sobota D, Townsend A (2013) Intentional versus unintentional nitrogen use in the United States: trends, efficiency and implications. Biogeochemistry 114:11–23CrossRefGoogle Scholar
  33. Josling T, Anderson K, Schmitz A, Tangermann S (2010) Understanding international trade in agricultural products: one hundred years of contributions by agricultural economists. Am J Agric Econ 92:424–446CrossRefGoogle Scholar
  34. Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci USA 109:6868–6872CrossRefGoogle Scholar
  35. Khumairoh U, Groot JCJ, Lantinga EA (2012) Complex agro-ecosystems for food security in a changing climate. Ecol Evol 2:1696–1704CrossRefGoogle Scholar
  36. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713CrossRefGoogle Scholar
  37. Lassaletta L, Aguilera E, Sanz-Cobena A, Pardo G, Billen G, Garnier J, Grizzetti B (submitted) Outsourcing of N2O emissions of Spanish agro-food system in the period 1961–2009Google Scholar
  38. Lassaletta L, Romero E, Billen G, Garnier J, García-Gómez H, Rovira JV (2012) Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer. Biogeosciences 9:57–70CrossRefGoogle Scholar
  39. Lassaletta L, Billen G, Romero E, Garnier J, Aguilera E (2013) How changes in diet and trade patterns have shaped the N cycle at the national scale: Spain (1961–2009). Reg Environ Change. doi: 10.1007/s10113-013-0536-1 Google Scholar
  40. Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Dev 1:40–66CrossRefGoogle Scholar
  41. Lemaire G, Franzluebbers A, Carvalho PCdF, Dedieu B (2013) Integrated crop–livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agric Ecosyst Environ. doi: 10.1016/j.agee.2013.08.009
  42. Liu J, Yang H, Savenije HHG (2008) China’s move to higher-meat diet hits water security. Nature 454:397CrossRefGoogle Scholar
  43. Liu C, Wang Q, Lei A, Yang Y, Ouyang Z, Lin Y, Li Y, Wang K (2009) Identification of anthropogenic parameters for a regional nitrogen balance model via field investigation of six ecosystems in China. Biogeochemistry 94:175–190CrossRefGoogle Scholar
  44. Martinelli LA, Pinto AS, Nardoto GB, Ometto J, Filoso S, Coletta LD, Ravagnani EC (2012) Nitrogen mass balance in the Brazilian Amazon: an update. Braz J Biol 72:683–690CrossRefGoogle Scholar
  45. Mazoyer M (2001) Protecting small farmers and the rural poor in the context of globalization. FAO, RomeGoogle Scholar
  46. McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF (2009) Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Glob Environ Change 19:21–33CrossRefGoogle Scholar
  47. McDougall GJ, Morrison IM, Stewart D, Weyers JDB, Hillman JR (1993) Plant fibers: botany, chemistry and processing for industrial use. J Sci Food Agric 62:1–20CrossRefGoogle Scholar
  48. Naylor R, Steinfeld H, Falcon W, Galloway J, Smil V, Bradford E, Alder J, Mooney H (2005) Losing the links between livestock and land. Science 310:1621–1622CrossRefGoogle Scholar
  49. Neill C, Coe MT, Riskin SH, Krusche AV, Elsenbeer H, Macedo MN, McHorney R, Lefebvre P, Davidson EA, Scheffler R, Figueira AMeS, Porder S, Deegan LA (2013) Watershed responses to Amazon soya bean cropland expansion and intensification. Philos Trans R Soc B 368:20120425CrossRefGoogle Scholar
  50. NinE (2009) The Barsac Declaration.
  51. Oenema O (2004) Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture. J Anim Sci 82(E-Suppl E):196–206Google Scholar
  52. Passy P, Gypens N, Billen G, Garnier J, Thieu V, Rousseau V, Callens J, Parent JY, Lancelot C (2013) A model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984. J Mar Syst. doi: 10.1016/j.jmarsys.2013.05.005
  53. Penuelas J, Sardans J, Alcaniz JM, Poch JM (2009) Increased eutrophication and nutrient imbalances in the agricultural soil of NE Catalonia, Spain. J Environ Biol 30:841–846Google Scholar
  54. Peters GP, Minx JC, Weber CL, Edenhofer O (2011) Growth in emission transfers via international trade from 1990 to 2008. Proc Natl Acad Sci USA 108:8903–8908CrossRefGoogle Scholar
  55. Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob Environ Change 20:451–462CrossRefGoogle Scholar
  56. Romero E, Garnier J, Lassaletta L, Billen G, Gendre R, Riou P, Cugier P (2013) Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry 113:481–505CrossRefGoogle Scholar
  57. Rulli MC, Saviori A, D’Odorico P (2013) Global land and water grabbing. Proc Natl Acad Sci USA 110:892–897CrossRefGoogle Scholar
  58. Schipanski M, Bennett E (2012) The influence of agricultural trade and livestock production on the global phosphorus cycle. Ecosystems 15:256–268CrossRefGoogle Scholar
  59. Schmitz C, Biewald A, Lotze-Campen H, Popp A, Dietrich JP, Bodirsky B, Krause M, Weindl I (2012) Trading more food: implications for land use, greenhouse gas emissions, and the food system. Glob Environ Change 22:189–209CrossRefGoogle Scholar
  60. Smaling EMA, Roscoe R, Lesschen JP, Bouwman AF, Comunello E (2008) From forest to waste: assessment of the Brazilian soybean chain, using nitrogen as a marker. Agric Ecosyst Environ 128:185–197CrossRefGoogle Scholar
  61. Stehfest E, Bouwman L, van Vuuren D, den Elzen M, Eickhout B, Kabat P (2009) Climate benefits of changing diet. Clim Change 95:83–102CrossRefGoogle Scholar
  62. Steinfeld H, Gerber P (2010) Livestock production and the global environment: consume less or produce better? Proc Natl Acad Sci USA 107:18237–18238CrossRefGoogle Scholar
  63. Sun B, Zhang LX, Yang LZ, Zhang FS, Norse D, Zhu ZL (2012) Agricultural non-point source pollution in China: causes and mitigation measures. Ambio 41:370–379CrossRefGoogle Scholar
  64. Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (2011) The european nitrogen assessment. Cambridge University Press, New YorkCrossRefGoogle Scholar
  65. Sutton MA, Bleeker A, Howard CM, Bekunda M, Grizzetti B, de Vries W, van Grinsven HJM, Abrol YP, Adhya TK, Billen G, Davidson EA, Datta A, Diaz R, Erisman JW, Liu XJ, Oenema O, Palm C, Raghuram N, Reis S, Scholz RW, Sims T, Westhoek H, Zhang FS (2013) Our Nutrient World: the challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International, EdinburghGoogle Scholar
  66. Swaney DP, Hong B, Ti C, Howarth RW, Humborg C (2012) Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: a brief overview. Curr Opin Environ Sustain 4:210–211CrossRefGoogle Scholar
  67. Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc B 365:2853–2867CrossRefGoogle Scholar
  68. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefGoogle Scholar
  69. USDA (2012) National Nutrient Database for Standard Reference, Release 24. Accessed 20 Sept 2012
  70. van Grinsven HJM, ten Berge HFM, Dalgaard T, Fraters B, Durand P, Hart A, Hofman G, Jacobsen BH, Lalor STJ, Lesschen JP, Osterburg B, Richards KG, Techen AK, Vertes F, Webb J, Willems WJ (2012) Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 9:5143–5160CrossRefGoogle Scholar
  71. Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc B 368:20130119CrossRefGoogle Scholar
  72. Weiss F, Leip A (2012) Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agric Ecosyst Environ 149:124–134CrossRefGoogle Scholar
  73. Wilkins RJ (2008) Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems. Philos Trans R Soc B 363:517–525CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Luis Lassaletta
    • 1
    Email author
  • Gilles Billen
    • 1
  • Bruna Grizzetti
    • 1
  • Josette Garnier
    • 1
  • Allison M. Leach
    • 2
  • James N. Galloway
    • 2
  1. 1.CNRS/Université Pierre et Marie Curie, UMR 7619 SisypheParisFrance
  2. 2.Environmental Sciences DepartmentUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations