Advertisement

Biogeochemistry

, Volume 117, Issue 2–3, pp 455–472 | Cite as

On the importance of quantifying bioavailable nitrogen instead of total nitrogen

  • Linda Jørgensen
  • Stiig MarkagerEmail author
  • Marie Maar
Article

Abstract

Monitored and modeled data provided the basis for the establishment of two nitrogen (N) budgets covering the Kattegat-Belt Sea area in the period 2000–2009: one for total nitrogen (TN) and one for bioavailable nitrogen (Nbio). Our results show a significant difference between the two budgets, and we argue that Nbio is more important than TN for our understanding of the sources causing marine eutrophication. Consequently, an optimal strategy for abatement of eutrophication aims at minimizing Nbio rather than TN. The TN budget shows that advection from the adjacent seas is the dominant source of N to the Kattegat-Belt Sea area. The loadings from land and atmosphere only account for 14 and 9 % of the TN loadings, respectively. However, when the bioavailability of the different N sources is taken into account, the supply from land and atmosphere becomes relatively more important, now accounting for 21 and 16 %, respectively (37 % in total). The ecological relevance of land and atmosphere loadings is most likely even larger since a fraction of the input from the Skagerrak is exported again before it can support primary production. Water action plans have reduced the direct loadings of TN from land and atmosphere by about 35 % since the 1980s. The contributions from land and atmosphere accounted for 47 % of the Nbio loadings in the 1980s. Hence, loadings from land and atmosphere have only decreased by 10 % points since the 1980s: from 47 to 37 %. The largest sink of TN in the study areas is advection to the adjacent seas (71 %) whereas denitrification and burial only accounts for 17 and 11 %, respectively.

Keywords

Nitrogen budget Eutrophication Nitrogen Dissolved organic nitrogen Bioavailability 

Notes

Acknowledgments

The authors wish to thank Aarhus University, Department of Bioscience, the Swedish University of Agricultural Sciences, the Baltic Nest Institute, DHI, the Helsinki Commission (HELCOM) and the Danish AgriFish Agency for delivering data for this study. We would also like to thank Cordula Göke for help with GIS calculations and Helle Knudsen-Leerbeck, Michael Olesen, Jesper Andersen and Ciarán Murray for critically reviewing the manuscript. This work was funded by The Danish Council for Strategic Research to the project IMAGE (Integrated Management of Agriculture, Fishery, Environment and Economy, grant no. 09-067259). We also thank two anonymous reviewers and the editor for valuable comments that helped improve the budgets and the manuscript.

References

  1. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  2. Backer H, Leppänen J-M, Brusendorff AC, Forsius K, Stankiewicz M, Mehtonen J, Pyhälä M, Laamanen M, Paulomäki H, Vlasov N, Haaranen T (2010) HELCOM Baltic Sea action plan—a regional programme of measures for the marine environment based on the ecosystem approach. Mar Pollut Bull 60:642–649CrossRefGoogle Scholar
  3. Boesch DF, Brinsfield RB, Magnien RE (2001) Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. J Environ Qual 30:303–320CrossRefGoogle Scholar
  4. Boynton WR, Hagy JD, Cornwell JC, Kemp WM, Greene SM, Owens MS, Baker JE, Larsen RK (2008) Nutrient budgets and management actions in the Patuxent River estuary, Maryland. Estuaries Coasts 31:623–651CrossRefGoogle Scholar
  5. Caccia VG, Boyer JN (2007) A nutrient loading budget for Biscayne Bay, Florida. Mar Pollut Bull 54:994–1008CrossRefGoogle Scholar
  6. Carlsson P, Granéli E, Segatto AZ (1999) Cycling of biologically available nitrogen in riverine humic substances between marine bacteria, a heterotrophic nanoflagellate and a photosynthetic dinoflagellate. Aquat Microb Ecol 18:23–36CrossRefGoogle Scholar
  7. Carstensen J, Conley DJ, Andersen JH, Ærtebjerg G (2006) Coastal eutrophication and trend reversal: a Danish case study. Limnol Oceanogr 51:398–408CrossRefGoogle Scholar
  8. Cederwall H, Elmgren R (1990) Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19:109–112Google Scholar
  9. Christensen PB, Rysgaard S, Sloth NP, Dalsgaard T, Schwærter S (2000) Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21:73–84CrossRefGoogle Scholar
  10. Christiansen C, Gertz F, Laima MJC, Lund-Hansen LC, Vang T, Jürgensen C (1997) Nutrient (P, N) dynamics in the southwestern Kattegat, Scandinavia: sedimentation and resuspension effects. Environ Geol 29:66–77CrossRefGoogle Scholar
  11. Christensen PB, Møhlenberg F, Lund-Hansen LC, Borum J, Christiansen C, Larsen SE, Hansen ME, Andersen J, Kirkegaard J (1998) The danish marine environment: has action improved its state?Google Scholar
  12. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  13. Conley DJ, Stockenberg A, Carman R, Johnstone RW, Rahm L, Wulff F (1997) Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 45:591–598CrossRefGoogle Scholar
  14. Conley DJ, Carstensen J, Ærtebjerg G, Christensen PB, Dalsgaard T, Hansen JLS, Josefson AB (2007) Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol Appl 17:165–184CrossRefGoogle Scholar
  15. Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464CrossRefGoogle Scholar
  16. Deutsch B, Forster S, Wilhelm M, Dippner JW, Voss M (2010) Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics. Biogeosciences 7:3259–3271CrossRefGoogle Scholar
  17. Ellermann T, Andersen HV, Bossi R, Christensen J, Løfstrøm P, Monies C, Grundahl L, Geels C (2011) Atmosfærisk deposition 2010. NOVANA. Aarhus University, DCE – Danish Center for Environment and Energy. 109 p. – Scientific report from DCE no 2. http://www2.dmu.dk/Pub/SR2.pdf
  18. Engqvist A (1996) Long-term nutrient balances in the eutrophication of the Himmerfjärden Estuary. Estuar Coast Shelf Sci 42:483–507CrossRefGoogle Scholar
  19. Floderus S (1995) Primær sedimentation og resuspensionens korttidsvariation. In: Jørgensen BB (ed) Stoftransport Og Stofomsætning i Århus Bugt. Miljøstyrelsen, Denmark, pp 113–122Google Scholar
  20. Geels C, Andersen HV, Skjøth CA, Christensen JH, Ellermann T, Løfstrøm P, Gyldenkærne S, Brandt J, Hansen KM, Frohn LM, Hertel O (2012) Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS. Biogeosciences 9:2625–2647CrossRefGoogle Scholar
  21. Gran V, Pitkänen H (1999) Denitrification in estuarine sediments in the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 393:107–115CrossRefGoogle Scholar
  22. Granéli E, Wallström K, Larsson U, Granéli W, Elmgren R (1990) Nutrient limitation of primary production in the Baltic Sea area. Ambio 19:142–151Google Scholar
  23. Gustafsson BG (2000) Time-dependent modeling of the Baltic entrance area. 1. Quantification of circulation and residence times in the Kattegat and the straits of the baltic sill. Estuaries 23:231–252CrossRefGoogle Scholar
  24. Heilmann JP, Richardson K, Ærtebjerg G (1994) Annual distribution and activity of phytoplankton in the Skagerrak/Kattegat frontal region. Mar Ecol Prog Ser 112:213–223CrossRefGoogle Scholar
  25. HELCOM (1993) First assessment of the state of the coastal waters of the Baltic Sea. Baltic Sea Environment Proceedings No. 54. 166 p. ISSN 0357-2994Google Scholar
  26. HELCOM (2005) Airborne nitrogen loads to the Baltic Sea. 24 p. www.helcom.fi
  27. HELCOM (2009) Eutrophication in the Baltic Sea—an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt Sea Environ Proc No 115B:148Google Scholar
  28. HELCOM (2010) Ministerial declaration on the implementation of the HELCOM Baltic sea action plan. http://www.helcom.fi/stc/files/Moscow2010/HELCOM%20Moscow%20Ministerial%20Declaration%20FINAL.pdf
  29. Højerslev NK, Holt N, Aarup T (1996) Optical measurements in the North Sea-Baltic Sea transition zone. I. On the origin of the deep water in the Kattegat. Cont Shelf Res 16:1329–1342CrossRefGoogle Scholar
  30. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:89–110CrossRefGoogle Scholar
  31. Jansen DL, Lundqvist DP, Christiansen C, Lund-Hansen LC, Balstrøm T, Leipe T (2003) Deposition of organic matter and particulate nitrogen and phosphorus at the North Sea—Baltic Sea transition—a GIS study. Oceanologia 45:283–303Google Scholar
  32. Janssen F, Neumann T, Schmidt M (2004) Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions. Mar Ecol Prog Ser 275:59–68CrossRefGoogle Scholar
  33. Jaworski NA, Howarth RW, Hetling LJ (1997) Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the Northeast United States. Environ Sci Technol 31:1995–2004CrossRefGoogle Scholar
  34. Jørgensen NOG, Tranvik LJ, Berg GM (1999) Occurrence and bacterial cycling of dissolved nitrogen in the Gulf of Riga, the Baltic Sea. Mar Ecol Prog Ser 191:1–18CrossRefGoogle Scholar
  35. Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Søndergaard M (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126:139–148CrossRefGoogle Scholar
  36. Josefson AB, Conley DJ (1997) Benthic response to a pelagic front. Mar Ecol Prog Ser 147:49–62CrossRefGoogle Scholar
  37. Josefson AB, Rasmussen B (2000) Nutrient retention by benthic macrofaunal biomass of Danish estuaries: importance of nutrient load and residence time. Estuar Coast Shelf Sci 50:205–216CrossRefGoogle Scholar
  38. Kaas H, Møhlenberg F, Forbes V, Pedersen B (1994) Biotilgængelighed af kvælstof og fosfor. Havforskning fra Miljøstyrelsen 40. København, 47 p. ISBN: 87-7810-168-9Google Scholar
  39. Kahru M, Savchuk OP, Elmgren R (2007) Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar Ecol Prog Ser 343:15–23CrossRefGoogle Scholar
  40. Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. J Geophys Res 105:16803–16821CrossRefGoogle Scholar
  41. Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters—a review. Oceanogr Mar Biol Annu Rev 40:427–489Google Scholar
  42. Keller DP, Hood RR (2011) Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay. Ecol Model 222:1139–1162CrossRefGoogle Scholar
  43. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70Google Scholar
  44. Koopmans DJ, Bronk DA (2002) Photochemical production of dissolved inorganic nitrogen and primary amines from dissolved organic nitrogen in waters of two estuaries and adjacent surficial groundwaters. Aquat Microb Ecol 26:295–304CrossRefGoogle Scholar
  45. Korth F, Deutsch B, Liskow I, Voss M (2012) Uptake of dissolved organic nitrogen by size-fractionated plankton along a salinity gradient from the North Sea to the Baltic Sea. Biogeochemistry 111:347–360CrossRefGoogle Scholar
  46. Lønborg C, Søndergaard M (2009) Microbial availability and degradation of dissolved organic carbon and nitrogen in two coastal areas. Estuar Coast Shelf Sci 81:513–520CrossRefGoogle Scholar
  47. Maar M, Hansen JLS (2011) Increasing temperatures change pelagic trophodynamics and the balance between pelagic and benthic secondary production in a water column model of the Kattegat. J Mar Syst 85:57–70CrossRefGoogle Scholar
  48. Maar M, Møller EF, Larsen J, Madsen KS, Wan Z, She J, Jonasson L, Neumann T (2011) Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea. Ecol Model 222:1696–1711CrossRefGoogle Scholar
  49. Markager S, Vincent WF (2000) Light attenuation and the absorption of UV and blue light in natural waters. Limnol Oceanogr 45:642–650CrossRefGoogle Scholar
  50. Markager S, Stedmon CA, Tranvik LJ, Kronberg L, Kulovaara M (2007). Final report for DONKEY—dissolved organic nitrogen as a key nutrient in the Baltic Sea. http://meeting.helcom.fi/c/document_library/get_file?p_l_id=18967&folderId=381607&name=DLFE-37410.pdf
  51. Monbet Y (1992) Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries 15:563–571CrossRefGoogle Scholar
  52. Mopper K, Kieber DJ (2002) Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In: Hansell DA, Carlson CA (eds) Biogeochemistry of dissolved organic matter. Academic Press, San Diego, pp 455–507CrossRefGoogle Scholar
  53. Neumann T, Schernewski G (2008) Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model. J Mar Syst 74:592–602CrossRefGoogle Scholar
  54. Nielsen MH (2005) The baroclinic surface currents in the Kattegat. J Mar Syst 55:97–121CrossRefGoogle Scholar
  55. Nielsen K, Risgaard-Petersen N, Sømod B, Rysgaard S, Bergø T (2001) Nitrogen and phosphorus retention estimated independently by flux measurements and dynamic modelling in the estuary, Randers Fjord, Denmark. Mar Ecol Prog Ser 219:25–40CrossRefGoogle Scholar
  56. Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219Google Scholar
  57. Normander B, Henriksen CI, Jensen TS, Sanderson H, Henrichs T, Larsen LE, Pedersen AB (2009) Natur og Miljø 2009 – Del B: Fakta. Danmarks Miljøundersøgelser, Aarhus University. 170 p. – Scientific report from DMU no. 751. http://www.dmu.dk/Pub/FR751_B.pdf
  58. Nowicki BL, Kelley JR, Requintina E, Van Keuren D (1997) Nitrogen losses through sediment denitrification in Boston Harbor and Massachusetts Bay. Estuaries 20:626–639CrossRefGoogle Scholar
  59. Olesen M (1993) The fate of an early diatom spring bloom in the Kattegat. Ophelia 37:51–66Google Scholar
  60. Olesen M (1995) Comparison of the sedimentation of a diatom spring bloom and of a subsurface chlorophyll maximum. Mar Biol 121:541–547CrossRefGoogle Scholar
  61. Olesen B (1996) Regulation of light attenuation and eelgrass Zostera marina depth distribution in a Danish embayment. Mar Ecol Prog Ser 134:187–194CrossRefGoogle Scholar
  62. Olesen M, Lundsgaard C (1995) Seasonal sedimentation of autochthonous material from the euphotic zone of a coastal system. Estuar Coast Shelf Sci 41:475–490CrossRefGoogle Scholar
  63. Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–311Google Scholar
  64. Peierls BL, Paerl HW (1997) Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnol Oceanogr 42:1819–1823CrossRefGoogle Scholar
  65. Perttilä M, Niemistö L, Mäkelä K (1995) Distribution, development and total amounts of nutrients in the Gulf of Finland. Estuar Coast Shelf Sci 41:345–360CrossRefGoogle Scholar
  66. Petersen DLJ, Hjorth M (Ed) 2010: Marine områder 2009. NOVANA. Tilstand og udvikling i miljø- og naturkvaliteten. Danmarks Miljøundersøgelser, Aarhus University. 127 p. – Scientific report from DMU no. 800. http://www.dmu.dk/Pub/FR800.pdf Google Scholar
  67. Rahm L, Jönsson A, Wulff F (2000) Nitrogen fixation in the Baltic proper: an empirical study. J Mar Syst 25:239–248CrossRefGoogle Scholar
  68. Rasmussen B, Gustafsson BG (2003) Computation of nutrient pools and fluxes at the entrance to the Baltic Sea, 1974–1999. Cont Shelf Res 23:483–500CrossRefGoogle Scholar
  69. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  70. Richardson K, Christoffersen A (1991) Seasonal distribution and production of phytoplankton in the southern Kattegat. Mar Ecol Prog Ser 78:217–227CrossRefGoogle Scholar
  71. Richardson K, Jacobsen T (1990) Jyllandsstrømmen. En transportmekanisme fra Tyske Bugt til Kattegat? København, 68 p. ISBN: 87-503-8508-9Google Scholar
  72. Risgaard-Petersen N, Ottosen LDM (2000) Nitrogen cycling in two temperate Zostera marina beds: seasonal variation. Mar Ecol Prog Ser 198:93–107CrossRefGoogle Scholar
  73. Risgaard-Petersen N, Nielsen LP, Rysgaard S, Dalsgaard T, Meyer RL (2003) Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnol Oceanogr 1:63–73CrossRefGoogle Scholar
  74. Rolff C, Elmgren R, Voss M (2008) Deposition of nitrogen and phosphorus on the Baltic Sea: seasonal patterns and nitrogen isotope composition. Biogeosciences 5:1657–1667CrossRefGoogle Scholar
  75. Rönnberg C, Bonsdorff E (2004) Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia 514:227–241CrossRefGoogle Scholar
  76. Rysgaard S, Fossing H, Jensen MM (2001) Organic matter degradation through oxygen respiration, denitrification, and manganese, iron, and sulfate reduction in marine sediments (the Kattegat and the Skagerrak). Ophelia 55:77–91CrossRefGoogle Scholar
  77. Salihoglu B, Garçon V, Oschlies A, Lomas MW (2008) Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: a modeling study at BATS. Deep Sea Res Part I 55:73–107CrossRefGoogle Scholar
  78. Savchuk OP (2005) Resolving the Baltic Sea into seven subbasins: n and P budgets for 1991–1999. J Mar Syst 56:1–15CrossRefGoogle Scholar
  79. Savchuk OP, Wulff F (2007) Modeling the Baltic Sea eutrophication in a decision support system. Ambio 36:141–148CrossRefGoogle Scholar
  80. Savchuk OP, Wulff F (2009) Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea. Hydrobiologia 629:209–224CrossRefGoogle Scholar
  81. Schinke H, Matthäus W (1998) On the causes of major Baltic inflows—an analysis of long time series. Cont Shelf Res 18:67–97CrossRefGoogle Scholar
  82. Seitzinger S, Sanders R (1997) Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Mar Ecol Prog Ser 159:1–12CrossRefGoogle Scholar
  83. Seitzinger SP, Sanders RW (1999) Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol Oceanogr 44:721–730CrossRefGoogle Scholar
  84. Seitzinger SP, Sanders RW, Styles R (2002) Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnol Oceanogr 47:353–366CrossRefGoogle Scholar
  85. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139CrossRefGoogle Scholar
  86. Stal LJ, Staal M, Villbrandt M (1999) Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat Microb Ecol 18:165–173CrossRefGoogle Scholar
  87. Statistical Offices of the Länder and the Federal Statistical Office [WWW Document] (2011). Land use. http://www.statistik-portal.de/Statistik-Portal/en/en_jb09_jahrtabf1.asp. Accessed 20 April 2013
  88. Stedmon CA, Markager S, Kaas H (2000) Optical Properties and Signatures of Chromophoric Dissolved Organic Matter (CDOM) in Danish Coastal Waters. Estuar Coast Shelf Sci 51:267–278CrossRefGoogle Scholar
  89. Stedmon CA, Markager S, Søndergaard M, Vang T, Laubel A, Borch NH, Windelin A (2006) Dissolved organic matter (DOM) export to a temperate estuary: seasonal variations and implications of land use. Estuaries Coasts 29:388–400Google Scholar
  90. Stedmon CA, Markager S, Tranvik LJ, Kronberg L, Slätis T, Martinsen W (2007) Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar Chem 104:227–240CrossRefGoogle Scholar
  91. Stedmon CA, Osburn CL, Kragh T (2010) Tracing water mass mixing in the Baltic–North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuar Coast Shelf Sci 87:156–162CrossRefGoogle Scholar
  92. Stepanauskas R, Leonardson L, Tranvik LJ (1999) Bioavailability of wetland-derived DON to freshwater and marine bacterioplankton. Limnol Oceanogr 44:1477–1485CrossRefGoogle Scholar
  93. Stepanauskas R, Farjalla VF, Tranvik LJ, Svensson JM, Esteves FA, Granéli W (2000) Bioavailability and sources of DOC and DON in macrophyte stands of a tropical coastal lake. Hydrobiologia 436:241–248CrossRefGoogle Scholar
  94. Stepanauskas R, Jørgensen NOG, Eigaard OR, Žvikas A, Tranvik LJ, Leonardson L (2002) Summer input of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. Ecol Monogr 72:579–597CrossRefGoogle Scholar
  95. Sundarambal P, Tkalich P, Balasubramanian R (2010) Modelling the effect of atmospheric nitrogen deposition on marine phytoplankton in the Singapore Strait. Water Sci Technol 61:859–867CrossRefGoogle Scholar
  96. Timmermann K, Markager S, Gustafsson KE (2010) Streams or open sea? Tracing sources and effects of nutrient loadings in a shallow estuary with a 3D hydrodynamic–ecological model. J Mar Syst 82:111–121CrossRefGoogle Scholar
  97. Trimmer M, Risgaard-Petersen N, Nicholls JC, Engström P (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Mar Ecol Prog Ser 326:37–47CrossRefGoogle Scholar
  98. Tuominen L, Heinaenen A, Kuparinen J, Nielsen LP (1998) Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper. Mar Ecol Prog Ser 172:13–24CrossRefGoogle Scholar
  99. Vähätalo AV, Järvinen M (2007) Photochemically produced bioavailable nitrogen from biologically recalcitrant dissolved organic matter stimulates production of a nitrogen-limited microbial food in the Baltic Sea. Limnol Oceanogr 52:132–143CrossRefGoogle Scholar
  100. Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int Rev Gesamten Hydrobiol 82:169–184CrossRefGoogle Scholar
  101. Windolf J, Thodsen H, Troldborg L, Larsen SE, Bøgestrand J, Ovesen NB, Kronvang B (2011) A distributed modelling system for simulation of monthly runoff and nitrogen sources, loads and sinks for ungauged catchments in Denmark. J Environ Monit 13:2645–2658CrossRefGoogle Scholar
  102. Witek Z, Humborg C, Savchuk O, Grelowski A, Łysiak-Pastuszak E (2003) Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Estuar Coast Shelf Sci 57:239–248CrossRefGoogle Scholar
  103. Wolfe FL, Kroeger KD, Valiela I (1999) Increased lability of estuarine dissolved organic nitrogen from urbanized watersheds. Biol Bull 197:290–292CrossRefGoogle Scholar
  104. Wulff F, Stigebrandt A, Rahm L (1990) Nutrient dynamics of the Baltic Sea. Ambio 19:126–133Google Scholar
  105. Wulff F, Perttilä M, Rahm L (1996) Monitoring, mass balance calculation of nutrients and the future of the Gulf of Bothnia. Ambio 8:28–35Google Scholar
  106. Yamashita Y, Tanoue E (2008) Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nat Geosci 1:579–582CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BioscienceAarhus UniversityRoskildeDenmark
  2. 2.Marine Biological SectionUniversity of CopenhagenHelsingørDenmark

Personalised recommendations