Advertisement

Biogeochemistry

, Volume 114, Issue 1–3, pp 341–358 | Cite as

MMHg production and export from intertidal sediments to the water column of a tidal lagoon (Arcachon Bay, France)

  • S. BouchetEmail author
  • D. Amouroux
  • P. Rodriguez-Gonzalez
  • E. Tessier
  • M. Monperrus
  • G. Thouzeau
  • J. Clavier
  • E. Amice
  • J. Deborde
  • S. Bujan
  • J. Grall
  • P. Anschutz
Article

Abstract

Hg cycling in biologically productive coastal areas is of special importance given the potential for bioaccumulation of monomethylmercury (MMHg) into aquatic organisms. Field experiments were performed during three different seasons in Arcachon Bay, a mesotidal lagoon (SW France), to assess the variability of the water column concentrations, sediment–water exchanges and potential formation and degradation of MMHg. The objectives were to evaluate the contribution of intertidal mudflats to MMHg production and the various pathways of Hg species export. Dissolved and bulk concentrations of Hg species in the water column downstream of tidal flats were measured throughout several tidal cycles. The Hg benthic fluxes at the sediment–water interface were determined by means of benthic chambers for three different stations. Hg methylation and demethylation potentials were determined in surficial sediments and the water column using isotopic tracers. The tidal surveys demonstrated that benthic remobilization of Hg occurs primarily in association with sediment erosion and advection during ebb tide. However, elevated dissolved Hg concentrations observed at low tide were found to be caused by a combination of pore-waters seeping, benthic fluxes and methylation in the water column. Benthic fluxes were more intense during late winter conditions (median MMHg and inorganic Hg (IHg) fluxes: 64 and 179 pmol m−2 h−1, respectively) and subsequently decreased in spring (median 0.7 and −5 pmol m−2 h−1, respectively) and fall (median −0.4 and −1.3 pmol m−2 h−1, respectively). The trends in methylation and demethylation potentials were at the opposite of the fluxes, two times lower during winter than for spring or fall conditions. In this tidal environment, MMHg production in surface sediments and its subsequent release is estimated to be the major source of MMHg to the water column during winter and spring time. However, during the more productive summer period, the Hg methylation extent in the water column may be very significant and equivalent to the sediment contribution.

Keywords

Mercury species Coastal ecosystem Tidal cycling Benthic reactivity 

Notes

Acknowledgments

This work is a contribution to the PROTIDAL project (ANR Blanc program) and Littoral Atlantic project (PNEC program). The authors would like to thank the municipality of Lanton (Arcachon Bay, France) for the logistic organization of the field campaigns. The authors greatly appreciate technical assistance from R. Marc, A. Masson and C. Robineau (LEMAR IUEM, CNRS/UBO/IRD, Plouzané, France) and R. Bridou, P. Pinel-Raffaitin and D. Point (IPREM-LCABIE) during field campaigns. The authors also thank A. Mouret and Dr. B. Deflandre (EPOC, University of Bordeaux, France) for providing us with some major geochemical measurements and Dr. A Migné (University of Paris 6, Roscoff, France) for the microphytobenthos biomass data. One anonymous reviewer and Dr. Carl Lamborg (WHOI) are greatly acknowledged for constructive comments during the review process and a revision of the manuscript at its final stage, respectively. S. Bouchet and P. Rodriguez-Gonzalez acknowledge respectively the French and the Spanish Ministers of Education and Research for their respective PhD and Postdoctoral fellowships.

Supplementary material

10533_2012_9815_MOESM1_ESM.doc (185 kb)
Supplementary material 1 (DOC 185 kb)

References

  1. Anschutz P, Zhong S, Sundby B, Mucci A, Gobeil C (1998) Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnol Oceanogr 43:53–64CrossRefGoogle Scholar
  2. Auby I, Labourg PJ (1996) Seasonal dynamics of Zostera noltii Hornem. in the Bay of Arcachon (France). J Sea Res 35:269–277CrossRefGoogle Scholar
  3. Barnes CE, Cochran JK (1993) Uranium geochemistry in estuarine sediments: controls on removal and release processes. Geochim Cosmochim Acta 57:555–569CrossRefGoogle Scholar
  4. Belzile N, Lang CY, Chen YW, Wang M (2008) The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments. Sci Total Environ 405:226–238CrossRefGoogle Scholar
  5. Benoit JM, Gilmour CC, Mason RP, Riedel GS, Riedel GF (1998) Behavior of mercury in the Patuxent river estuary. Biogeochemistry 40:249–265CrossRefGoogle Scholar
  6. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957CrossRefGoogle Scholar
  7. Benoit JM, Shull DH, Harvey RM, Beal SA (2009) Effect of bioirrigation on sediment–water exchange of methylmercury in Boston Harbor, Massachusetts. Environ Sci Technol 43:3669–3674CrossRefGoogle Scholar
  8. Blanchet H, De Montaudouin X, Chardy P, Bachelet G (2005) Structuring factors and recent changes in subtidal macrozoobenthic communities of a coastal lagoon, Arcachon Bay (France). Estuar Coast Shelf Sci 64:561–576CrossRefGoogle Scholar
  9. Bloom NS, Gill GA, Cappellino S, Dobbs C, McShea L, Driscoll C, Mason R, Rudd J (1999) Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environ Sci Technol 33:7–13CrossRefGoogle Scholar
  10. Boucher G, Boucher-Radoni R (1988) In situ measurements of respiratory metabolism and nitrogen fluxes at the interface with oyster beds. Mar Ecol Prog Ser 44:229–238CrossRefGoogle Scholar
  11. Bouchet S, Bridou R, Tessier E, Rodriguez-Gonzalez P, Monperrus M, Abril G, Amouroux D (2011a) An experimental approach to investigate mercury species transformations under redox oscillations in coastal sediments. Mar Environ Res 71:1–9CrossRefGoogle Scholar
  12. Bouchet S, Tessier E, Monperrus M, Bridou R, Clavier J, Thouzeau G, Amouroux D (2011b) Measurements of gaseous mercury exchanges at the sediment–water, water–atmosphere and sediment–atmosphere interfaces of a tidal environment (Arcachon Bay, France). J Environ Monitor 13:1351CrossRefGoogle Scholar
  13. Canario J, Poissant L, O’Driscoll N, Ridal J, Delongchamp T, Pilote M, Constant P, Blais J, Lean D (2008) Mercury partitioning in surface sediments of the Upper St. Lawrence River (Canada): evidence of the importance of the sulphur chemistry. Water Air Soil Pollut 187:219–231CrossRefGoogle Scholar
  14. Canton M, Anschutz P, Coynel A, Polsenaere P, Auby I, Poirier D (2010) Nutrient export to an Eastern Atlantic coastal zone: first modeling and nitrogen mass balance. Biogeochemistry. doi: 10.1007/s10533-010-9558-7 Google Scholar
  15. Castel J, Caumette P, Herbert R (1996) Eutrophication gradients in coastal lagoons as exemplified by the Bassin d’Arcachon and the etang du Prevost. Hydrobiologia 329:ix–xxviiiCrossRefGoogle Scholar
  16. Choe KY, Gill GA, Lehman RD, Han S, Heim WA, Coale KH (2004) Sediment-water exchange of total mercury and monomethyl mercury in the San Francisco Bay-Delta. Limnol Oceanogr 49:1512–1527CrossRefGoogle Scholar
  17. Cossa D, Gobeil C (2000) Mercury speciation in the lower St. Lawrence estuary. Can J Fish Aquat Sci 57:138–147CrossRefGoogle Scholar
  18. Cossa D, Averty B, Pirrone N (2009) The origin of methylmercury in open mediterranean waters. Limnol Oceanogr 54:837–844CrossRefGoogle Scholar
  19. Covelli S, Faganeli J, Horvat M, Brambati A (1999) Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar Coast Shelf Sci 48:415–428CrossRefGoogle Scholar
  20. Covelli S, Faganeli J, De Vittor C, Predonzani S, Acquavita A, Horvat M (2008) Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy). Appl Geochem 23:529–546CrossRefGoogle Scholar
  21. De Wit R, Stal LJ, Lomstein BA, Herbert RA, Van Gemerden H, Viaroli P, Cecherelli VU, Rodríguez-Valera F, Bartoli M, Giordani G, Azzoni R, Schaub B, Welsh DT, Donnelly A, Cifuentes A, Antón J, Finster K, Nielsen LB, Pedersen AGU, Neubauer AT, Colangelo MA, Heijs SK (2001) Robust: the role of buffering capacities in stabilising coastal lagoon ecosystems. Cont Shelf Res 21:2021–2041CrossRefGoogle Scholar
  22. Deborde J, Anschutz P, Auby I, Glé C, Commarieu MV, Maurer D, Lecroart P, Abril G (2008a) Role of tidal pumping on nutrient cycling in a temperate lagoon (Arcachon Bay, France). Mar Chem 109:98–114CrossRefGoogle Scholar
  23. Deborde J, Abril G, Mouret A, Jezequel D, Thouzeau G, Clavier J, Bachelet G, Anschutz P (2008b) Effects of seasonal dynamics in a Zostera noltii meadow on phosphorus and iron cycles in a tidal mudflat (Arcachon Bay, France). Mar Ecol Prog Ser 355:59–71CrossRefGoogle Scholar
  24. Dedieu K, Rabouille C, Thouzeau G, Jean F, Chauvaud L, Clavier J, Mesnage V, Ogier S (2007) Benthic O2 distribution and dynamics in a Mediterranean lagoon (Thau, France): an in situ microelectrode study. Estuar Coast Shelf Sci 72:393–405CrossRefGoogle Scholar
  25. Devereux R, Winfrey MR, Winfrey J, Stahl DA (1996) Depth profile of sulfate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol Ecol 20:23–31CrossRefGoogle Scholar
  26. Emili A, Koron N, Covelli S, Faganeli J, Acquavita A, Predonzani S, Vittor CD (2011) Does anoxia affect mercury cycling at the sediment-water interface in the Gulf of Trieste (northern Adriatic Sea)? Incubation experiments using benthic flux chambers. Appl Geochem 26:194–204CrossRefGoogle Scholar
  27. Forja JM, Gomez-Parra A (1998) Measuring nutrient fluxes across the sediment-water interface using benthic chambers. Mar Ecol Progr Ser 164:95–105Google Scholar
  28. Gagnon C, Pelletier É, Mucci A (1997) Behaviour of anthropogenic mercury in coastal marine sediments. Mar Chem 59:159–176CrossRefGoogle Scholar
  29. Gill GA, Bloom NS, Cappellino S, Driscoll CT, Dobbs C, McShea L, Mason R, Rudd JWM (1999) Sediment–water fluxes of mercury in Lavaca Bay, Texas. Environ Sci Technol 33:663–669CrossRefGoogle Scholar
  30. Guédron S, Huguet L, Vignati DAL, Liu B, Gimbert F, Ferrari BJD, Zonta R, Dominik J (2012) Tidal cycling of mercury and methylmercury between sediments and water column in the Venice Lagoon (Italy). Mar Chem 130–131:1–11CrossRefGoogle Scholar
  31. Hammerschmidt CR, Fitzgerald WF (2006) Methylmercury cycling in sediments on the continental shelf of southern New England. Geochim Cosmochim Acta 70:918–930CrossRefGoogle Scholar
  32. Hammerschmidt CR, Fitzgerald WF (2008) Sediment-water exchange of methylmercury determined from shipboard benthic flux chambers. Mar Chem 109:86–97CrossRefGoogle Scholar
  33. Hammerschmidt CR, Fitzgerald WF, Lamborg CH, Balcom PH, Visscher PT (2004) Biogeochemistry of methylmercury in sediments of Long Island Sound. Mar Chem 90:31–52CrossRefGoogle Scholar
  34. Jeong HY, Klaue B, Blum JD, Hayes KF (2007) Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environ Sci Technol 41:7699–7705CrossRefGoogle Scholar
  35. King JK, Saunders FM, Lee RF, Jahnke RA (1999) Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environ Toxicol Chem 18:1362–1369CrossRefGoogle Scholar
  36. King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA (2001) A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol 35:2491–2496CrossRefGoogle Scholar
  37. Lamborg CH, Tseng CM, Fitzgerald WF, Balcom PH, Hammerschmidt CR (2003) Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with “reducible Hg” titrations. Environ Sci Technol 37:3316–3322CrossRefGoogle Scholar
  38. Lehnherr I, Louis VL (2009) Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems. Environ Sci Technol 43:5692–5698CrossRefGoogle Scholar
  39. Mason RP, Kim E-H, Cornwell J, Heyes D (2006) An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Mar Chem 102:96–110CrossRefGoogle Scholar
  40. Merritt KA, Amirbahman A (2007) Mercury dynamics in sulfide-rich sediments: geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA. Geochim Cosmochim Acta 71:929–941CrossRefGoogle Scholar
  41. Mikac N, Niessen S, Ouddane B, Wartel M (1999) Speciation of mercury in sediments of the Seine estuary (France). Appl Organomet Chem 13:715–725CrossRefGoogle Scholar
  42. Monperrus M, Tessier E, Veschambre S, Amouroux D, Donard O (2005) Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis. Anal Bioanal Chem 381:854–862CrossRefGoogle Scholar
  43. Monperrus M, Tessier E, Amouroux D, Leynaert A, Huonnic P, Donard OFX (2007a) Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Mar Chem 107:49–63CrossRefGoogle Scholar
  44. Monperrus M, Tessier E, Point D, Vidimova K, Amouroux D, Guyoneaud R, Leynaert A, Grall J, Chauvaud L, Thouzeau G, Donard OFX (2007b) The biogeochemistry of mercury at the sediment-water interface in the Thau Lagoon. 2. Evaluation of mercury methylation potential in both surface sediment and the water column. Estuar Coast Shelf Sci 72:485–496CrossRefGoogle Scholar
  45. Mortimer RJG, Krom MD, Watson PG, Frickers PE, Davey JT, Clifton RJ (1999) Sediment–water exchange of nutrients in the intertidal zone of the Humber Estuary, UK. Mar Poll Bull 37:261–279CrossRefGoogle Scholar
  46. Muresan B, Cossa D, Jezequel D, Prevot F, Kerbellec S (2007) The biogeochemistry of mercury at the sediment-water interface in the Thau lagoon. 1. Partition and speciation. Estuar Coast Shelf Sci 72:472–484CrossRefGoogle Scholar
  47. Paquette KE, Helz GR (1997) Inorganic speciation of mercury in sulfidic waters: the importance of zero-valent sulfur. Environ Sci Technol 31:2148–2153CrossRefGoogle Scholar
  48. Patterson DM, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnol Oceanogr 36:936–948Google Scholar
  49. Point D, Monperrus M, Tessier E, Amouroux D, Chauvaud L, Thouzeau G, Jean F, Amice E, Grall J, Leynaert A, Clavier J, Donard OFX (2007) Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuar Coast Shelf Sci 72:457–471CrossRefGoogle Scholar
  50. Ramalhosa E, Pato P, Monterroso P, Pereira E, Vale C, Duarte AC (2006a) Accumulation versus remobilization of mercury in sediments of a contaminated lagoon. Mar Poll Bull 52:353–356CrossRefGoogle Scholar
  51. Ramalhosa E, Segade SR, Pereira E, Vale C, Duarte A (2006b) Mercury cycling between the water column and surface sediments in a contaminated area. Water Res 40:2893–2900CrossRefGoogle Scholar
  52. Riedel GF, Sanders JG, Osman RW (1997) Biogeochemical control on the flux of trace elements from estuarine sediments: water column oxygen concentrations and benthic infauna. Estuar Coast Shelf Sci 44:23–38CrossRefGoogle Scholar
  53. Sanei H, Goodarzi F (2006) Relationship between organic matter and mercury in recent lake sediment: the physical-geochemical aspects. Appl Geochem 21:1900–1912CrossRefGoogle Scholar
  54. Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. J Geophys Res, [Biogeosciences] 113, G00C03. doi: 10.1029/2008JG000745
  55. Stal LJ, Behrens SB, Villbrandt M, Van Bergeijk S, Kruyning F (1996) The biogeochemistry of two eutrophic marine lagoons and its effect on microphytobenthic communities. Hydrobiologia 329:185–198CrossRefGoogle Scholar
  56. Tengberg A, Stahl H, Gust G, Muller V, Arning U, Andersson H, Hall POJ (2004) Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progr Oceanogr 60:1–28CrossRefGoogle Scholar
  57. Tengberg A, Hall POJ, Andersson U, Linden B, Styrenius O, Boland G, de Bovee F, Carlsson B, Ceradini S, Devol A, Duineveld G, Friemann JU, Glud RN, Khripounoff A, Leather J, Linke P, Lund-Hansen L, Rowe G, Santschi P, de Wilde P, Witte U (2005) Intercalibration of benthic flux chambers: II. Hydrodynamic characterization and flux comparisons of 14 different designs. Mar Chem 94:147–173CrossRefGoogle Scholar
  58. Thouzeau G, Grall J, Clavier J, Chauvaud L, Jean F, Leynaert A, Longphuirt S ni, Amice E, Amouroux D (2007) Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuar Coast Shelf Sci 72:432–446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Bouchet
    • 1
    Email author
  • D. Amouroux
    • 1
  • P. Rodriguez-Gonzalez
    • 1
  • E. Tessier
    • 1
  • M. Monperrus
    • 1
  • G. Thouzeau
    • 2
  • J. Clavier
    • 2
  • E. Amice
    • 2
  • J. Deborde
    • 3
  • S. Bujan
    • 3
  • J. Grall
    • 4
  • P. Anschutz
    • 3
  1. 1.Laboratoire de Chimie Analytique Bio-inorganique et EnvironnementInstitut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, UMR 5254 CNRS—Université de Pau et des Pays de l’AdourPau cedex 9France
  2. 2.Laboratoire des Sciences de l’Environnement MarinUMR 6539 CNRS/UBO/IRD, IUEM, Technopôle Brest-IroisePlouzanéFrance
  3. 3.Laboratoire Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC)UMR 5805 CNRS—Université de Bordeaux ITalenceFrance
  4. 4.OSU IUEM, Technopôle Brest-IroisePlouzanéFrance

Personalised recommendations