Biogeochemistry

, Volume 113, Issue 1–3, pp 525–544 | Cite as

Watershed land use alters riverine silica cycling

Article

Abstract

Recent research has highlighted that humans are perturbing the global silica (Si) cycle through land use change. Here we compare in-stream Si biogeochemistry across four rivers that lie along a gradient of land use change in New England, USA. Differences between basins were most notable during the late winter/early spring period when dissolved Si (DSi) concentrations declined significantly in all but the most urban site. Declines in DSi concentration could not be attributed to volumetric dilution by higher discharges, nor in-stream phytoplankton growth, as biogenic Si concentrations did not increase during this period. We provide evidence that uptake of Si by terrestrial vegetation, specifically trees, is responsible for the observed declines of in-stream DSi concentrations (a loss of 2.7 μM day−1 at the most forested site). We hypothesize that sap flow during this late winter/early spring period is driving this accretion. We estimate that 68 kmol Si km−2 is accreted annually by New England forests, falling well within the range of forest Si accretion rates found in published studies. This analysis increases our understanding of the mechanisms contributing to altered Si biogeochemistry in rivers draining watersheds with different land use.

Keywords

Silica Rivers New England Land use/land cover Terrestrial vegetation 

Supplementary material

10533_2012_9784_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Admiraal W, Breugem P, Jacobs DMLHA, Steveninck ED (1990) Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms. Biogeochemistry 9:175–185CrossRefGoogle Scholar
  2. Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682CrossRefGoogle Scholar
  3. Anderson D, Glibert P, Burkholder J (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuar Coasts 25:704–726CrossRefGoogle Scholar
  4. Arar EJ, Collins GB (1997) In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. In: Office of Research and Development (ed). National Exposure Research Laboratory, CincinnatiGoogle Scholar
  5. Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecol Bull 35:469–476Google Scholar
  6. Bar-Yosef B, Schwartz S, Markovich T, Lucas B, Assaf R (1988) Effect of root volume and nitrate solution concentration on growth, fruit yield, and temporal N and water uptake rates by apple trees. Plant Soil 107:49–56CrossRefGoogle Scholar
  7. Beale BML (1962) Some uses of computers in operational research. Ind Org 31:27–28Google Scholar
  8. Berounsky VM, Nixon SW (1993) Rates of nitrification along an estuarine gradient in Narragansett Bay. Estuaries 16:718–730CrossRefGoogle Scholar
  9. Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58:2341–2359CrossRefGoogle Scholar
  10. Boesch D (2002) Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuar Coasts 25:886–900CrossRefGoogle Scholar
  11. Bothwell ML (1985) Phosphorus Limitation of lotic periphyton growth rates: an intersite comparison using continuous-flow troughs (Thompson River System, British Columbia). Limnol Oceanogr 30:527–542CrossRefGoogle Scholar
  12. Bowes MJ, House WA, Hodgkinson RA, Leach DV (2005) Phosphorus–discharge hysteresis during storm events along a river catchment: the River Swale, UK. Water Res 39:751–762CrossRefGoogle Scholar
  13. Brady PV, Carroll SA (1994) Direct effects of CO2 and temperature on silicate weathering: possible implications for climate control. Geochim Cosmochim Acta 58:1853–1856CrossRefGoogle Scholar
  14. Bravo HR, Jiang F, Hunt RJ (2002) Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resour Res 38:1153CrossRefGoogle Scholar
  15. Brookshire ENJ, Gerber S, Menge DNL, Hedin LO (2012) Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol Lett 15:9–16CrossRefGoogle Scholar
  16. Caissie D, Pollock TL, Cunjak RA (1996) Variation in stream water chemistry and hydrograph separation in a small drainage basin. J Hydrol 178:137–157CrossRefGoogle Scholar
  17. Carey JC, Fulweiler RW (2011) Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry:1–14. 10.1007/s10533-011-9671-2
  18. Chapin FS (1980) THE mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  19. Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on biogenic Si pools in temperate soils. Biogeosc Discuss 8:4391–4419CrossRefGoogle Scholar
  20. Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42:774–777CrossRefGoogle Scholar
  21. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16:1121CrossRefGoogle Scholar
  22. Conley DJ, Schelske CL (2002) Biogenic silica. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K (eds) Tracking environmental change using lake sediments p 281–293. Springer, DordechtGoogle Scholar
  23. Conley DJ, Stalnacke P, Pitkanen H, Wilander A (2000) The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnol Oceanogr 45:1850–1853CrossRefGoogle Scholar
  24. Conley DJ, Likens GE, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook experimental forest. Glob Change Biol 14:2548–2554Google Scholar
  25. Cornelis J-T, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2010a) Tracing the origin of dissolved silicon transferred from various soil–plant systems towards rivers: a review. Biogeosci Discuss 7:5873–5930CrossRefGoogle Scholar
  26. Cornelis JT, Ranger J, Iserentant A, Delvaux B (2010b) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97:231–245CrossRefGoogle Scholar
  27. Davies-Colley R, Hickey C, Quinn J, Ryan P (1992) Effects of clay discharges on streams. Hydrobiologia 248:215–234CrossRefGoogle Scholar
  28. De La Rocha CL, Brzezinski MA, DeNiro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64:2467–2477CrossRefGoogle Scholar
  29. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  30. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731CrossRefGoogle Scholar
  31. Descy JP, Servais P, Smitz JS, Billen G, Everbecq E (1987) Phytoplankton biomass and production in the river Meuse (Belgium). Water Res 21:1557–1566CrossRefGoogle Scholar
  32. Descy J-P, Leitao M, Everbecq E, Smitz JS, Deliège J-F (2012) Phytoplankton of the River Loire, France: a biodiversity and modelling study. J Plankton Res 34:120–135CrossRefGoogle Scholar
  33. Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30:275–281CrossRefGoogle Scholar
  34. Dolan DM, Yui AK, Geist RD (1981) Evaluation of river load estimation methods for total phosphorus. J Great Lakes Res 7:207–214CrossRefGoogle Scholar
  35. Epstein E (1994) The anomaly of silicon in plant biology. Proc Nat Acad Sci 91:11–17CrossRefGoogle Scholar
  36. Friedman M (1939) A correction: the use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 34:109Google Scholar
  37. Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river. Biogeochemistry 74:115–130CrossRefGoogle Scholar
  38. Galloway JN (1998) The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24CrossRefGoogle Scholar
  39. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356CrossRefGoogle Scholar
  40. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnol Oceanogr 40:750–765CrossRefGoogle Scholar
  41. Garvin CJ (2006) An exploratory study of the terrestrial biogeochemical silicon cycle at a forested watershed in Northern Vermont. Cornell University, IthacaGoogle Scholar
  42. Georg RB, West AJ, Basu AR, Halliday AN (2009) Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget. Earth Planet Sci Lett 283:67–74CrossRefGoogle Scholar
  43. Gessler A, Schneider S, Von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285CrossRefGoogle Scholar
  44. Goudie A (1972) The chemistry of world calcrete deposits. J Geol 80:449–463CrossRefGoogle Scholar
  45. Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320CrossRefGoogle Scholar
  46. Grasshoff K (ed) (1976) Methods of seawater analysis, 2nd edn. Verlag Chemie, WeinheimGoogle Scholar
  47. Hacke U, Sauter JJ (1996) Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia 105:435–439CrossRefGoogle Scholar
  48. Hackney CTL, Cahoon B, Preziosi C, Norris A (2002) Silicon is the link between tidal marshes and estuarine fisheries: a new paradigm. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Springer, Dordecht, pp 543–552CrossRefGoogle Scholar
  49. Hall FR (1970) Dissolved solids-discharge relationships: 1. Mixing models. Water Resour Res 6:845–850CrossRefGoogle Scholar
  50. Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822CrossRefGoogle Scholar
  51. Hill AR, Labadia CF, Sanmugadas K (1998) Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry 42:285–310CrossRefGoogle Scholar
  52. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046CrossRefGoogle Scholar
  53. Hofmann A, Roussy D, Filella M (2002) Dissolved silica budget in the North basin of Lake Lugano. Chem Geol 182:35–55CrossRefGoogle Scholar
  54. Hooper RP, Christophersen N, Peters NE (1990) Modelling streamwater chemistry as a mixture of soilwater end-members—an application to the Panola Mountain catchment, Georgia, U.S.A. J Hydrol 116:321–343CrossRefGoogle Scholar
  55. Humborg C, Pastuszak M, Aigars J, Siegmund H, Mörth CM, Ittekkot V (2006) Decreased silica land–sea fluxes through damming in the Baltic Sea catchment—significance of particle trapping and hydrological alterations. Biogeochemistry 77:265–281CrossRefGoogle Scholar
  56. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488CrossRefGoogle Scholar
  57. Jacobs S, Struyf E, Maris T, Meire P (2008) Spatiotemporal aspects of silica buffering in restored tidal marshes. Estuar Coast Shelf Sci 80:42–52CrossRefGoogle Scholar
  58. Jansen N, Hartmann J, Lauerwald R, Dürr HH, Kempe S, Loos S, Middelkoop H (2010) Dissolved silica mobilization in the conterminous USA. Chem Geol 270:90–109CrossRefGoogle Scholar
  59. Ladouche B, Probst A, Viville D, Idir S, Baqué D, Loubet M, Probst JL, Bariac T (2001) Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France). J Hydrol 242:255–274CrossRefGoogle Scholar
  60. Laruelle GG, Roubeix V, Sferratore A, Brodherr B, Ciuffa D, Conley DJ, Dürr HH, Garnier J, Lancelot C, Le Thi Phuong Q, Meunier JD, Meybeck M, Michalopoulos P, Moriceau B, Ní Longphuirt S, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier P, Saccone L, Slomp CP, Spiteri C, Van Cappellen P (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Global Biogeochem Cycles 23:GB4031CrossRefGoogle Scholar
  61. Leapold LB (1968) Hydrology for urban land use planning: a guidebook on the hydrologic effects of urban land use. U.S. geological survey circular 554. U.S. Geological Survey, Washington, DCGoogle Scholar
  62. Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163CrossRefGoogle Scholar
  63. Markewitz D, Richter DD (1998) The bio in aluminum and silicon geochemistry. Biogeochemistry 42:235–252CrossRefGoogle Scholar
  64. Marschner H, Häussling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees Struct Funct 5:14–21Google Scholar
  65. Martin JW (ed) (1958) The physiology of maple sap flow. Ronald Press, New YorkGoogle Scholar
  66. Miretzky P, Conzonno V, Cirelli Af (2001) Geochemical processes controlling silica concentrations in groundwaters of the Salado River drainage basin, Argentina. J Geochem Explor 73:155–166CrossRefGoogle Scholar
  67. Nagorski SA, Morre JN, Smith DB (2001) Geochemical studies and relations between water quality and streamflow in the Upper Blackfoot Watershed, Montana: data for July 1997–Dec 1998. In: USG Survey (ed) Open file report 01-059, p 94Google Scholar
  68. Nihlgård B (1985) The ammonium hypothesis: an additional explanation to the forest dieback in Europe. Ambio 14:2–8Google Scholar
  69. O’Malley PER, Milburn JA (1983) Freeze-induced fluctuations in xylem sap pressure in Acer pseudoplatanus. Can J Bot 61:3100–3106CrossRefGoogle Scholar
  70. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  71. Richards RP, Holloway J (1987) Monte Carlo studies of sampling strategies for estimating tributary loads. Water Resour Res 23:1939–1948CrossRefGoogle Scholar
  72. Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  73. Rojo C, Cobelas MA, Arauzo M (1994) An elementary, structural analysis of river phytoplankton. Hydrobiologia 289:43–55CrossRefGoogle Scholar
  74. Schulze ED, Čermák J, Matyssek R, Penka M, Zimmermann R, Vasícek F, Gries W, Kučera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees: a Comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475–483CrossRefGoogle Scholar
  75. Sferratore A, Garnier J, Billen G, Conley DJ, Pinault S (2006) Diffuse and point sources of silica in the Seine River watershed. Environ Sci Technol 40:6630–6635CrossRefGoogle Scholar
  76. Sin Y, Wetzel RL, Anderson IC (1999) Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River Estuary, Virginia: analyses of long-term data. Estuaries 22:260–275CrossRefGoogle Scholar
  77. Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Ann Rev Energy Environ 25:53–88CrossRefGoogle Scholar
  78. Smis A, Van Damme S, Struyf E, Clymans W, Van Wesemael B, Frot E, Vandevenne F, Van Hoestenberghe T, Govers G, Meire P (2011) A trade-off between dissolved and amorphous silica transport during peak flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments. Biogeochemistry 106:475–487CrossRefGoogle Scholar
  79. Strickland JDH, Parsons TR (eds) (1968) A practical handbook of seawater analysis. Queen’s Printer, OttawaGoogle Scholar
  80. Struyf E, Conley DJ (2008) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7:88–94CrossRefGoogle Scholar
  81. Struyf E, Smis A, Van Damme S, Garnier J, Govers G, Van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1:129CrossRefGoogle Scholar
  82. Swale EMF (1969) Phytoplankton in two English rivers. J Ecol 57:1–23CrossRefGoogle Scholar
  83. Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29:2021–2026CrossRefGoogle Scholar
  84. Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a re-estimate. Science 268:375–379CrossRefGoogle Scholar
  85. Triplett L, Engstrom D, Conley D, Schellhaass S (2008) Silica fluxes and trapping in two contrasting natural impoundments of the upper Mississippi River. Biogeochemistry 87:217–230CrossRefGoogle Scholar
  86. Turner RE, Rabalais NN, Justic D (2008) Gulf of Mexico hypoxia: alternate states and a legacy. Environ Sci Technol 42:2323–2327CrossRefGoogle Scholar
  87. USDA (2011) Maple syrup 2011. National Agricultural Statistics Service, Concord, pp 1–8Google Scholar
  88. USFS (1999) Forest inventory and analysis of Massachusetts. United States Forest Service, Arlington. http://www.fia.fs.fed.us/
  89. Van Bennekom AJ, Salomons W (1981) Pathways of nutrients and organic matter from land to ocean through rivers. In: U. Nations (ed) River inputs to ocean systems. United Nations, New York, p 18Google Scholar
  90. Van Nieuwenhuyse EE, LaPerriere JD (1986) Effects of placer gold mining on primary production in sub Artic streams in Alaska. Water Resour Bull 22:91–99CrossRefGoogle Scholar
  91. Vieillard AM, Fulweiler RW, Hughes ZJ, Carey JC (2011) The ebb and flood of silica: quantifying dissolved and biogenic silica fluxes from a temperate salt marsh. Estuar Coast Shelf Sci 95:415–423CrossRefGoogle Scholar
  92. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  93. Wall GR, Phillips PJ, Riva-Murray K (1998) Seasonal and spatial patterns of nitrate and silica concentrations in Canajoharie Creek, New York. J Environ Qual 27:381–389CrossRefGoogle Scholar
  94. White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747CrossRefGoogle Scholar
  95. Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manag 21:203–217CrossRefGoogle Scholar
  96. Yamada SS, D’Elia CF (1984) Silicic acid regeneration from estuarine sediment cores. Mar Ecol Prog Ser 18:113–118CrossRefGoogle Scholar
  97. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res Oceanogr Abstr 10:221–231CrossRefGoogle Scholar
  98. Zarriello PJ, Socolow RS (2003) The U.S. geological survey streamflow and observation-well network in Massachusetts and Rhode Island. Open-file report 03-277. U.S. Geological Survey, Rhode Island, p 1–120Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Earth and the EnvironmentBoston UniversityBostonUSA
  2. 2.Department of BiologyBoston UniversityBostonUSA

Personalised recommendations