Skip to main content

Advertisement

Log in

Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Organic nitrogen use by mycorrhizal fungi and associated plants could fuel productivity in nitrogen-limited systems. To test whether fungi assimilated soil-derived organic nitrogen, we compared the 14C signal (expressed as Δ14C) from 1950s to 1960s thermonuclear testing in protein and structural carbon of ectomycorrhizal fungi. As expected, structural carbon had Δ14C similar to recent photosynthesis; however, protein Δ14C was either higher or lower than structural carbon depending on the fungal taxa. This suggests that some protein carbon derived from uptake of organic nitrogen with different Δ14C signals. Specimens from two taxa (Lactarius and Russula) adapted to taking up soluble nutrients had protein higher than structural carbon in Δ14C, indicating uptake of young, post-bomb organic nitrogen, whereas two taxa (Cortinarius and Leccinum) adapted to using insoluble, complex organic nutrients had protein lower than structural carbon in Δ14C, indicating uptake of old, pre-bomb organic nitrogen. Tuber, a genus common in mineral soil, was also consistently lower in Δ14C for protein than for structural carbon, with an estimated 10 % of protein carbon originating from old, deep organic nitrogen for this taxon. Our results indicate that radiocarbon can provide evidence of organic nitrogen use in ectomycorrhizal fungi and reflects the exploration depth of different taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Amelung W (2003) Nitrogen biomarkers and their fate in soil. J Plant Nutr Soil Sci 166:677–686

    Article  Google Scholar 

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  Google Scholar 

  • Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206

    Article  Google Scholar 

  • Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Article  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE et al (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. P Natl Acad Sci 104:14014–14019

    Article  Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    Article  Google Scholar 

  • Hardie SML, Garnett MH, Fallick AE, Ostle NJ, Rowland AP (2009) Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma 153:393–401

    Article  Google Scholar 

  • Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal mushrooms correspond to belowground exploration types. Plant Soil 327:71–83

    Article  Google Scholar 

  • Hobbie JE, Hobbie EA (2012) Amino acid cycling in plankton and soil microbes studied with radioisotopes: measured amino acids in soil do not reflect bioavailability. Biogeochemistry 107:339–360

    Article  Google Scholar 

  • Hobbie EA, Weber NS, Trappe JM (2001) Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytol 150:601–610

    Article  Google Scholar 

  • Hobbie EA, Weber NS, Trappe JM, van Klinken GJ (2002) Using radiocarbon to determine the mycorrhizal status of fungi. New Phytol 156:129–136

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  Google Scholar 

  • Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ et al (2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187:485–493

    Article  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants–an important N uptake pathway? Soil Biol Biochem 37:413–423

    Article  Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C et al (2011) Old and stable soil organic matter is not necessarily recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Change Biol 17:1097–1107

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  Google Scholar 

  • Lamhamedi MS, Godbout C, Fortin JA (1994) Dependence of Laccaria bicolor basidiome development on current photosynthesis of Pinus strobus seedlings. Can J Forest Res 24:1797–1804

    Article  Google Scholar 

  • Last FT, Pelham J, Mason PA, Ingleby K (1979) Influence of leaves on sporophore production by fungi forming sheathing mycorrhizas with Betula spp. Nature 280:169

    Article  Google Scholar 

  • Levin I, Hesshaimer V (2000) Radiocarbon–a unique tracer of global carbon dynamics. Radiocarbon 42:69–80

    Google Scholar 

  • Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231

    Article  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Lindahl BO, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling in boreal forests–towards a less ‘phytocentric’ perspective. Plant Soil 242:123–135

    Article  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J et al (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B et al (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    Article  Google Scholar 

  • Meyer A, Grote R, Polle A, Butterbach-Bahl K (2010) Simulating mycorrhiza contribution to forest C- and N cycling-the MYCOFON model. Plant Soil 327:493–517

    Article  Google Scholar 

  • Morford SL, Houlton BZ, Dahlgren RA (2011) Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477:78–84

    Article  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  Google Scholar 

  • Neff JC, Chapin FS, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1:205–211

    Article  Google Scholar 

  • Ohenoja E (1984) Fruit body production of larger fungi in Finland. Introduction to the study in 1976–1978. Annal Bot Fenn 21:349–355

    Google Scholar 

  • Ollinger SV, Goodale CL, Hayhoe K, Jenkins JP (2008) Potential effects of climate change and rising CO2 on ecosystem processes in northeastern US forests. Mitig Adapt Strat Global Change 13:467–485

    Article  Google Scholar 

  • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502

    Article  Google Scholar 

  • Pepper DA, DelGrosso SJ, McMurtrie RE, Parton WJ (2005) Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising CO2, temperature and nitrogen input. Glob Biogeochem Cycle 19:GB1004

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Rineau F, Garbaye J (2009) Effects of liming on ectomycorrhizal community structure in relation to soil horizons and tree hosts. Fungal Ecol 2:103–109

    Article  Google Scholar 

  • Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J For Res 127:347–357

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schulten HR, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fert Soils 26:1–15

    Article  Google Scholar 

  • Smernik RJ, Baldock JA (2005) Does solid-state N-15 NMR spectroscopy detect all soil organic nitrogen? Biogeochemistry 75:507–528

    Article  Google Scholar 

  • Sollins P, Swanston C, Kleber M, Filley T, Kramer M, Crow S et al (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324

    Article  Google Scholar 

  • Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK et al (2009) Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96:209–231

    Article  Google Scholar 

  • Trumbore S (2009) Radiocarbon and soil carbon dynamics. Annu Rev Earth Pl Sc 37:47–66

    Article  Google Scholar 

  • Trumbore SE, Zheng S (1996) Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon 38:219–229

    Google Scholar 

  • Vetter J (2006) Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem 102:6–9

    Article  Google Scholar 

  • Vetter J, Siller I (1991) Chitingehalt von höheren Pilzen. Eur Food Res Technol 193:36–38

    Google Scholar 

  • Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys Res 102:28,795–28,804

    Article  Google Scholar 

Download references

Acknowledgments

We thank Joseph Craine, Adrien Finzi, John Hobbie, Bruce Peterson, and Knut Kielland for discussions and comments. This work was supported by US National Science Foundation grants DEB-0743348, DEB-0614266, DEB-0423385, IOS-0843366, and OPP-0612598, and a Bullard Fellowship from Harvard University to the senior author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Hobbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobbie, E.A., Ouimette, A.P., Schuur, E.A.G. et al. Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi. Biogeochemistry 114, 381–389 (2013). https://doi.org/10.1007/s10533-012-9779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9779-z

Keywords

Navigation