Skip to main content
Log in

The fate of 15NH4 + labeled deposition in a Scots pine forest in the Netherlands under high and lowered NH4 + deposition, 8 years after application

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

To study the long-term fate of deposited ammonium (NH4 +) in a Scots pine forest stand under high nitrogen (N) deposition in the Netherlands we re-sampled the plots of a 15N tracer experiment with high (i.e. ambient) and lowered N deposition in this stand 8 years after application of the tracer. The results were compared with results obtained 7 years earlier. In the 7 years between the samplings the 15N deltas of needles, twigs and upper organic soil layer had converged to similar values still above the natural 15N abundance, suggesting equilibration as a result of intensive cycling of N among these pools. Bark and wood had lower deltas than needles and twigs, but if the label found was attributed to tissue synthesized since the start of the labeling only, bark values were similar to needles and twigs, whereas wood values were higher indicating retranslocation of N into older wood. Mineral soil lost all 15N label it had accumulated after 1 year indicating that this label had not been strongly bound. The first year the low N treatment had retained more of the labeled NH4 + deposition than the high N treatment, but in the seven subsequent years relatively more label was retained in the latter. This better retention after 7 years was ascribed to a larger fraction of label taken up by the vegetation in the high N treatment. This shows that the vegetation can affect the label dynamics despite the fact that only a relatively small amount of label was present in the aboveground vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–224. doi:10.1016/0169-5347(92)90048-G

    Article  Google Scholar 

  • Aber JD, Magill AH (2004) Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. For Ecol Manag 196:1–5. doi:10.1016/j.foreco.2004.03.009

    Article  Google Scholar 

  • Aber JD, McDowell WH, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty SG, Currie WS, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Balster NJ, Marshall JD, Clayton M (2009) Coupling tree-ring δ13C and δ15N to test the effect of fertilization on mature Douglas-fir (Pseudotsuga menziesii var. glauca) stands across the Interior northwest, USA. Tree Physiol 29:1491–1501. doi:10.1093/treephys/tpp090

    Article  Google Scholar 

  • Bevington PR, Robinson DK (1994) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  • Boxman AW, Roelofs JGM (2006) Effects of liming, sod-cutting and fertilization at ambient and decreased nitrogen deposition on the soil solution chemistry in a Scots pine forest in the Netherlands. For Ecol Manag 237:237–245. doi:10.1016/j.foreco.2006.09.050

    Article  Google Scholar 

  • Boxman AW, Van Dam D, Van Dijk HFG, Hogervorst RF, Koopmans CJ (1995) Ecosystem responses to reduced nitrogen and sulphur inputs into two coniferous forest stands in the Netherlands. For Ecol Manag 71:7–29. doi:10.1016/0378-1127(94)06081-S

    Article  Google Scholar 

  • Boxman AW, van der Ven PJM, Roelofs JGM (1998) Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyn, the Netherlands. For Ecol Manag 101:155–163. doi:10.1016/S0378-1127(97)00132-1

    Article  Google Scholar 

  • Boxman AW, Peters RCJH, Roelofs JGM (2008) Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Environ Pollut 156:1252–1259. doi:10.1016/j.envpol.2008.03.017

    Article  Google Scholar 

  • Buchmann N, Gebauer G, Schulze E-D (1996) Partitioning of 15N-labeled ammonium and nitrate among soil, litter, below- and above-ground biomass of trees and understory in a 15-year-old Picea abies plantation. Biogeochemistry 33:1–23. doi:10.1007/BF00000967

    Article  Google Scholar 

  • Colman BP, Fierer N, Schimel JP (2007) Abiotic nitrate incorporation in soil: is it real? Biogeochemistry 84:161–169. doi:10.1007/s10533-007-9111-5

    Article  Google Scholar 

  • Currie WS, Nadelhoffer KJ, Aber JD (2004) Redistributions of 15N highlight turnover and replenishment of mineral soil organic N as a long-term control on forest C balance. For Ecol Manag 196:109–127. doi:10.1016/j.foreco.2004.03.015

    Article  Google Scholar 

  • Curtis CJ, Evans CD, Goodale CL, Heaton THE (2011) What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems 14:1021–1037. doi:10.1007/s10021-011-9461-7

    Article  Google Scholar 

  • Davidson EA, Chorover J, Dail DB (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Glob Chang Biol 9:228–236. doi:10.1046/j.1365-2486.2003.00592.x

    Article  Google Scholar 

  • Davidson EA, Dail DB, Chorover J (2008) Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate. Biogeochemistry 90:65–73. doi:10.1007/s10533-008-9231-6

    Article  Google Scholar 

  • Dik EJ (1984) De schatting van het houtvolume van staande bomen van een aantal in de bosbouw gebruikte soorten. Uitvoerig verslag BD19-1. Rijksinstituut voor Bosbouw en Groenbeheer “De Dorschkamp,” Wageningen

  • Dorodnikov M, Kuzyakov Y, Fangmeier A, Wiesenberg GLB (2011) C and N in soil organic matter density fractions under elevated atmospheric CO2: turnover vs. stabilization. Soil Biol Biochem 43:579–589. doi:10.1016/j.soilbio.2010.11.026

    Article  Google Scholar 

  • FAO (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World soil resources reports 103. FAO, Rome

  • Feng X, Xu Y, Jaffé R, Schlesinger WH, Simpson MJ (2010) Turnover rates of hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific 13C isotopic analysis. Org Geochem 41:573–579. doi:10.1016/j.orggeochem.2010.02.013

    Article  Google Scholar 

  • Fernandez I, Rustad L, David M, Nadelhoffer K, Mitchell M (1999) Mineral soil and solution responses to experimental N and S enrichment at the Bear Brook watershed in Maine (BBWM). Environ Monit Assess 55:165–185. doi:10.1023/A:1006110910473

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manag 196:159–171. doi:10.1016/j.foreco.2004.03.018

    Article  Google Scholar 

  • Friedrich U, Falk K, Bahlmann E, Marquardt T, Meyer H, Niemeyer T, Schemmel S, von Oheimb G, Haerdtle W (2011) Fate of airborne nitrogen in heathland ecosystems: a 15N tracer study. Glob Chang Biol 17:1549–1559. doi:10.1111/j.1365-2486.2010.02322.x

    Article  Google Scholar 

  • Green RN, Trowbridge RL, Klinka K (1993) Towards a taxonomic classification of humus forms. Forest Sci Monograph 29:1–49

    Google Scholar 

  • Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manag 101:37–55. doi:10.1016/S0378-1127(97)00124-2

    Article  Google Scholar 

  • Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests: effects of air pollution and forest management. Environ Rev 14:1–57. doi:10.1139/a05-015

    Article  Google Scholar 

  • He H, Li X, Zhang W, Zhang X (2011) Differentiating the dynamics of native and newly immobilized amino sugars in soil frequently amended with inorganic nitrogen and glucose. Eur J Soil Sci 62:144–151. doi:10.1111/j.1365-2389.2010.01324.x

    Article  Google Scholar 

  • Holland EA, Braswell BH, Lamarque JF, Townsend A, Sulzman J, Müller J-F, Dentener F, Brasseur G, Levy H, Penner JE, Roelofs G-J (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res Atmos 102:15849–15866. doi:10.1029/96JD03164

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211. doi:10.2307/1942661

    Article  Google Scholar 

  • Jenniskens FMM (1993) NICCCE: Description of the model and calibration of the moisture module for the Ysselsteyn site. MSc Thesis, Department of Soil Science and Geology, Wageningen University

  • Koopmans CJ, Tietema A, Boxman AW (1996) The fate of 15N enriched throughfall in two coniferous forest stands at different nitrogen deposition levels. Biogeochemistry 34:19–44. doi:10.1007/BF02182953

    Article  Google Scholar 

  • Koopmans CJ, Van Dam D, Tietema A, Verstraten JM (1997) Natural 15N abundance in two nitrogen saturated forest ecosystems. Oecologia 111:470–480. doi:10.1007/s004420050260

    Article  Google Scholar 

  • Koopmans CJ, Tietema A, Verstraten JM (1998) Effects of reduced N deposition on litter decomposition and N cycling in two N saturated forests in the Netherlands. Soil Biol Biochem 30:141–151. doi:10.1016/S0038-0717(97)00116-8

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1

    Article  Google Scholar 

  • Llorente M, Glaser B, Turrión M-B (2010) Anthropogenic disturbance of natural forest vegetation on calcareous soils alters soil organic matter composition and natural abundance of 13C and 15N in density fractions. Eur J Forest Res 129:1143–1153. doi:10.1007/s10342-010-0402-3

    Article  Google Scholar 

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manag 196:7–28. doi:10.1016/j.foreco.2004.03.033

    Article  Google Scholar 

  • McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam JL, Kaushal SS (2004) Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. For Ecol Manag 196:29–41. doi:10.1016/j.foreco.2004.03.010

    Article  Google Scholar 

  • Nadelhoffer KJ, Downs MR, Fry B, Aber JD, Magill AH, Melillo JM (1995) The fate of 15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia 103:292–301. doi:10.1007/BF00328617

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148. doi:10.1038/18205

    Article  Google Scholar 

  • Nadelhoffer KJ, Colman BP, Currie WS, Magill A, Aber JD (2004) Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). For Ecol Manag 196:89–107. doi:10.1016/j.foreco.2004.03.014

    Article  Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38. doi:10.1034/j.1600-0706.2001.11311.x

    Article  Google Scholar 

  • Schleppi P, Bucher-Wallin L, Siegwolf R, Saurer M, Muller N, Bucher JB (1999) Simulation of increased nitrogen deposition to a montane forest ecosystem: partitioning of the added 15N. Water Air Soil Pollut 116:129–134. doi:10.1023/A:1005206927764

    Article  Google Scholar 

  • Templer PH, Lovett GM, Weathers KC, Findlay SE, Dawson TE (2005) Influence of tree species on forest nitrogen retention in the Catskill Mountains, New York, USA. Ecosystems 8:1–16. doi:10.1007/s10021-004-0230-8

    Article  Google Scholar 

  • Templer PH, Mack MC, Chapin FS III, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Dail DB, D’Antonio CM, Emmett BA, Epstein HE, Goodale CL, Gundersen P, Hobbie SE, Holland K, Hooper DU, Hungate BA, Lamontagne S, Nadelhoffer KJ, Osenberg CW, Perakis SS, Schleppi P, Schimel JP, Schmidt IK, Sommerkorn M, Spoelstra J, Tietema A, Wessel WW, Zak DR (2012) Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology 93:1816–1829. doi:10.1890/11-1146.1

    Article  Google Scholar 

  • Tietema A, Warmerdam B, Lenting E, Riemer L (1992) Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: moisture and pH. Plant Soil 147:69–78. doi:10.1007/BF00009372

    Article  Google Scholar 

  • Tietema A, Boxman AW, Bredemeier M, Emmett BA, Moldan F, Gundersen P, Schleppi P, Wright RF (1998) Nitrogen saturation experiments (NITREX) in coniferous forest ecosystems in Europe: a summary of results. Environ Pollut 102:433–437. doi:10.1016/S0269-7491(98)80065-1

    Article  Google Scholar 

  • Van Breemen N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307:599–604. doi:10.1038/307599a0

    Article  Google Scholar 

  • Van Dijk HFG, Boxman AW, Roelofs JGM (1992) Effects of a decrease in atmospheric deposition of nitrogen and sulfur on the mineral balance and vitality of a Scots pine stand in the Netherlands. For Ecol Manag 51:207–215. doi:10.1016/0378-1127(92)90486-S

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Holmes WE, Burton AJ, Zogg GP (2004) Anthropogenic N deposition and the fate of 15NO3 in a northern hardwood ecosystem. Biogeochemistry 69:143–157. doi:10.1023/B:BIOG.0000031045.24377.99

    Article  Google Scholar 

Download references

Acknowledgments

The 15N work was carried out with financial support from the Commission of European Communities (STEP-CT909-0056 and EV5V-CT93-0264) and the University of Amsterdam. Dr. Emiel van Loon gave valuable advice on the final draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim W. Wessel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessel, W.W., Tietema, A. & Boxman, A.W. The fate of 15NH4 + labeled deposition in a Scots pine forest in the Netherlands under high and lowered NH4 + deposition, 8 years after application. Biogeochemistry 113, 467–479 (2013). https://doi.org/10.1007/s10533-012-9775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9775-3

Keywords

Navigation