Skip to main content

Advertisement

Log in

Methane fluxes from a patterned fen of the northeastern part of the La Grande river watershed, James Bay, Canada

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In northeastern Canada, at the ecotonal limit of the forest tundra and lichen woodland, a rise of the regional water table in the peatland systems was registered since Little Ice Age resulting in increasing pool compartment at the expense of terrestrial surfaces. We hypothesized that, with a mean water table closer to peat surface and higher pool density, these ecosystems would be great CH4 emitters. In summers 2009 and 2010, methane fluxes were measured in a patterned fen located in the northeastern portion of the La Grande river watershed to determine the contribution of the different microforms (lawns, hollows, hummocks, string, pools) to the annual CH4 budget. Mean seasonal CH4 fluxes from terrestrial microforms ranged between 12.9 and 49.4 mg m−2 day−1 in 2009 and 15.4 and 47.3 mg m−2 day−1 in 2010. Pool fluxes (which do not include ebullition fluxes) ranged between 102.6 and 197.6 mg CH4 m−2 day−1 in 2009 and 76.5 and 188.1 mg CH4 m−2 day−1 in 2010. Highest fluxes were measured in microforms with water table closer to peat surface but no significant relationship was observed between water table depth and CH4 fluxes. Spatially weighted CH4 budget demonstrates that, during the growing season, the studied peatland emitted 66 ± 31 in 2009 and 55 ± 26 mg CH4 m−2 day−1 in 2010, 79 % of which is accounted by pool fluxes. In a context where climate projections predict greater precipitations in northeastern Canada, these results indicate that this type of peatlands could contribute to modify the methane balance in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alm J, Saarnio S, Nykänen H, Silvola J, Martikainen P (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163–186

    Google Scholar 

  • Arlen-Pouliot Y (2009) Développement holocène et dynamique récente des tourbières minérotrophes structurées du Haut-Boréal québécois, PhD thesis, Biology department, Université Laval, Québec. http://www.theses.ulaval.ca/

  • Bartlett KB, Crill PM, Sass RL, Harriss RC, Dise NB (1992) Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska. J Geophys Res 97:16645–16660

    Article  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR (1999) Controls on CH4 emissions from a northern peatland. Glob Biogeochem Cycles 13(1):81–91

    Article  Google Scholar 

  • Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern Peatlands. J Ecol 83:403–420

    Article  Google Scholar 

  • Bubier JL, Costello A, Moore TR, Roulet NT, Savage K (1993a) Microtopography and methane flux in boreal peatlands, northern Ontario, Canada. Can J Bot 71:1056–1063

    Article  Google Scholar 

  • Bubier JL, Moore TR, Roulet NT (1993b) Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology 74:2240–2254

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bellisario L, Comer NT, Crill PM (1995) Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, Canada. Glob Biogeochem Cycles 9:455–470

    Article  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30:1414–1418

    Article  Google Scholar 

  • Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxyde in a low wind oligotrophic lake measured by the additio of SF6. Limnol Oceanogr 43:647–656

    Article  Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DI, Madzar L, Sanner W (1988) Methane flux from Minnesota Peatlands. Glob Biogeochem Cycles 2:371–384

    Article  Google Scholar 

  • Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017

    Article  Google Scholar 

  • Daulat WE, Clymo RS (1998) Effects of temperature and watertable on the efflux of methane from peatland surface cores. Atmos Environ 32:3207–3218

    Article  Google Scholar 

  • Demarty M, Bastien J, Tremblay A (2009) Carbon dioxide and methane annual emissions from two boreal reservoirs and nearby lakes in Quebec, Canada. Biogeosci Discuss 6:2939–2963

    Article  Google Scholar 

  • Dissanska M, Bernier M, Payette S (2009) Object-based classification of very high resolution panchromatic images for evaluating recent change in the structure of patterned peatland. Can J Remote Sens 25:189–215

    Article  Google Scholar 

  • Dlugokencky EJ, Bruhwiler L, White JWC, Emmons LK, Novelli PC, Montzka SA, Masarie KA, Lang PM, Crotwell AM, Miller JB, Gatti LV (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36:L18803

    Article  Google Scholar 

  • Dribault Y, Chokmani K, Bernier M (2011) Monitoring seasonal dynamic of surface hydrology in minerotrophic peatlands using high resolution satellite imagery. EGU, Vienne

    Google Scholar 

  • Duc N, Crill P, Bastviken D (2010) Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100:185–196

    Article  Google Scholar 

  • Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene History of the Laurentide Ice Sheet. Géog Phys Quatern 41:237–263

    Google Scholar 

  • Gažovič M, Kutzbach L, Schreiber P, Wille C, Wilmking M (2010) Diurnal dynamics of CH4 from a boreal peatland during snowmelt. Tellus B 62:133–139

    Article  Google Scholar 

  • Gorham E (1991) Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Hamilton JD, Kelly CA, Rudd JWM, Hesslein RH, Roulet NT (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). J Geophys Res 99:1495–1510

    Article  Google Scholar 

  • Heikkinen JEP, Maljanen M, Aurela M, Hargreaves KJ, Martikainen PJ (2002) Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Res 21:49–62

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Hutchinson MF, McKenney DW, Lawrence K, Pedlar JH, Hopkinson RF, Milewska E, Papadopol P (2009) Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J Appl Meteorol Climatol 48:725–741

    Article  Google Scholar 

  • Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    Article  Google Scholar 

  • Kettunen A (2003) Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: a modeling study. Glob Biogeochem Cycles 17:1051

    Article  Google Scholar 

  • Kettunen A, Kaitala V, Alm J, Silvola J, Nykänen H, Martikainen PJ (1996) Cross-correlation analysis of the dynamics of methane emissions from a boreal peatland. Glob Biogeochem Cycles 10:457–471

    Article  Google Scholar 

  • Lelieveld JOS, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50:128–150

    Article  Google Scholar 

  • McEnroe NA, Roulet NT, Moore TR, Garneau M (2009) Do pool surface area and depth control CO2 and CH4 fluxes from an ombrotrophic raised bog, James Bay, Canada? J Geophys Res 114:G01001

    Article  Google Scholar 

  • Mikaloff Fletcher SE, Tans PP, Bruhwiler LM, Miller JB, Heimann M (2004) CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Glob Biogeochem Cycles 18:GB4004

    Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Eur J Soil Sci 44:651–664

    Article  Google Scholar 

  • Moore TR, Knowles R (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69:33–38

    Article  Google Scholar 

  • Moore TR, Knowles R (1990) Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11:45–61

    Article  Google Scholar 

  • Moore TR, Heyes A, Roulet NT (1994) Methane emissions from wetlands, southern Hudson Bay lowland. J Geophys Res 99:1455–1467

    Article  Google Scholar 

  • Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim Chang 40:229–245

    Article  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36

    Article  Google Scholar 

  • Moosavi SC, Crill PM (1997) Controls on CH4 and CO2 emissions along two moisture gradients in the Canadian boreal zone. J Geophys Res 102:29261–29277

    Article  Google Scholar 

  • Nilsson M, Mikkelä C, Sundh I, Granberg G, Svensson BH, Ranneby B (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. J Geophys Res 106:20847–20860

    Article  Google Scholar 

  • Payette S, Rochefort L (2001) Écologie des tourbières du Québec et du Labrador. Les Presses de l’Université Laval, Ste-Foy

    Google Scholar 

  • Payette S, Bhiry N, Delwaide A, Simard M (2000) Origin of the lichen woodland at its southern range limit in eastern Canada: the catastrophic impact of insect defoliators and fire on the spruce-moss forest. Can J For Res 30:288–305

    Article  Google Scholar 

  • Pelletier L, Moore TR, Roulet NT, Garneau M, Beaulieu-Audy V (2007) Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. J Geophys Res 112:G01018

    Article  Google Scholar 

  • Plummer DA, Caya D, Frigon A, Côté H, Giguère M, Paquin D, Biner S, Harvey R, de Elia R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19:3112–3132

    Article  Google Scholar 

  • Proulx-Mc Innis S (2010) Caractérisation hydrologique, topographique et géomorphologique d’un bassin versant incluant une tourbière minérotrophe fortement aqualysée, Baie-de-James, Québec, MSc thesis, Science de l’eau. INRS, Québec, p 147

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  Google Scholar 

  • Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27:35–60

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Strack M, Kellner E, Waddington JM (2005) Dynamic of biogenic gas bubbles in peat and their effects on peatland biogeohemistry. Glob Biogeochem Cycles 19:1003–1029

    Article  Google Scholar 

  • Strack M, Waller M, Waddington J (2006) Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems 9:278–287

    Article  Google Scholar 

  • Tardif S, St-Hilaire A, Roy R, Bernier M, Payette S (2009) Statistical properties of hydrographs in minerotrophic fens and small lakes in mid-latitude Québec, Canada. Can Water Resour J 34(4):365–380

    Article  Google Scholar 

  • Tarnocai C, Kettles IM, Lacelle B (2002) Peatlands of Canada database. In: Geological Survey of Canada (ed). Natural Resources Canada, Ottawa

  • Tokida T, Miyasaki T, Mizoguchi M, Nagata O, Takakai F, Kagemoto A, Hatano R (2007) Falling atmospheric pressure as a trigger for methane ebullition from peatland. Glob Biogeochem Cycle 21:1–8

    Article  Google Scholar 

  • Treat CC, Bubier JL, Varner RK, Crill PM (2007) Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen. J Geophys Res 112:G01014

    Article  Google Scholar 

  • Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD (2008) Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J Geophys Res 113, G00A10

  • Ullah S, Frasier R, Pelletier L, Moore TR (2009) Greenhouse gas fluxes from boreal forest soils during the snow-free period in Quebec, Canada. Can J For Res 3:666–680

    Article  Google Scholar 

  • Van den Pol-van Dasselaar A, van Beusichem ML, Oenema O (1999) Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry 44:221–237

    Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22785

    Article  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  Google Scholar 

  • Whiting GJ, Chanton JP (1992) Plant-dependent CH4 emission in a subarctic Canadian fen. Glob Biogeochem Cycles 6:225–231

    Article  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795

    Article  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210

    Article  Google Scholar 

  • Wuebbles DJ, Tamaresis JS (1993) The role of methane in the global environment. In: Khalil MAK (ed) Atmospheric methane: sources, sinks, and role in global change. Springer-Verlag, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank NSERC, FQRNT, Hydro-Québec and Consortium Ouranos for financial support. We gratefully thank Hans Asnong, Éric Rosa and Jean-François Hélie for judicious advices and laboratory assistance. We also thank Yan Bilodeau, Antoine Thibault, Robin Beauséjour, Sébastien Lacoste and Sylvain Jutras for field and laboratory assistance. Special thanks to Gwenael Carrer, Yann Dribault and Sandra Proulx McInnis for sharing data and results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémie Cliche Trudeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trudeau, N.C., Garneau, M. & Pelletier, L. Methane fluxes from a patterned fen of the northeastern part of the La Grande river watershed, James Bay, Canada. Biogeochemistry 113, 409–422 (2013). https://doi.org/10.1007/s10533-012-9767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9767-3

Keywords

Navigation