, Volume 112, Issue 1–3, pp 661–676 | Cite as

Effect of water table drawdown on peatland nutrient dynamics: implications for climate change

  • M. L. Macrae
  • K. J. Devito
  • M. Strack
  • J. M. Waddington


It is anticipated that a lowering of the water table and reduced soil moisture levels in peatlands may increase peat decomposition rates and consequently affect nutrient availability. However, it is not clear if patterns will be consistent across different peatland types or within peatlands given the natural range of ecohydrological conditions within these systems. We examined the effect of persistent drought on peatland nutrient dynamics by quantifying the effects of an experimentally lowered water table position (drained for a 10-year period) on peat KCl-extractable total inorganic nitrogen (ext-TIN), peat KCl-extractable nitrate (ext-NO3 ), and water-extractable ortho-phosphorus (ext-PO4 3−) concentrations and net phosphorus (P) and nitrogen (N) mineralization and nitrification rates at natural (control) and drained microforms (hummocks, lawns) of a bog and poor fen near Québec City, Canada. Drainage (water table drawdown) decreased net nitrification rates across the landscape and increased ext-NO3 concentrations, but did not affect net N and P mineralization rates or ext-TIN and ext-PO4 3− concentrations. We suggest that the thick capillary fringe at the drained peatland likely maintained sufficient moisture above the water table to limit the effects of drainage on microbial activity, and a 20 cm lowering of the water table does not appear to have been sufficient to create a clear difference in nutrient dynamics in this peatland landscape. We found some evidence of differences in nutrient concentrations with microforms, where concentrations were greater in lawn than hummock microforms at control sites indicating some translocation of nutrients. In general, the same microtopographic differences were not observed at drained sites. The general spatial patterns in nutrient concentrations did not reflect net mineralization/immobilization rates measured at our control or drained peatlands. Rather, the spatial patterns in nutrient availability may be regulated by differences in vegetation (mainly Sphagnum moss) cover between control and drained sites and possibly differences in hydrologic connection between microforms. Our results suggest that microform distribution and composition within a peatland may be important for determining how peatland nutrient dynamics will respond to water table drawdown in northern peatlands, as some evidence of microtopographic differences in nutrient dynamics was found.


Peatlands Nitrogen Phosphorus Drainage Water table drawdown Microtopography 



We wish to thank Melissa Greenwood, Jason Cagampan, Claudia St-Arnaud, and Scott Ketcheson for field assistance, and Erin Harvey for assistance with statistical analyses. This project was supported by a McMaster postdoctoral fellowship to MLM through funding by a Premier’s Research Excellence Award to JMW. Additional funding was provided a Canadian Foundation for Climate and Atmospheric Science grant to JMW. We thank the Nirom Peat Moss company for access to the site.


  1. Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181. doi: 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2 CrossRefGoogle Scholar
  2. Bayley SE, Thormann MN, Szumigalski AR (2005) Nitrogen mineralization and decomposition in western boreal bog and fen peat. Ecoscience 12:455–465. doi: 10.2980/i1195-6860-12-4-455.1 CrossRefGoogle Scholar
  3. Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc Lond B 268:1315–1321. doi: 10.2980/i1195-6860-12-4-455.1 CrossRefGoogle Scholar
  4. Belyea LR, Baird AJ (2006) Beyond “The limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76(3):299–322. doi: 10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2 CrossRefGoogle Scholar
  5. Binkley D, Hart SC (1989) The components of nitrogen availability assessments in forest soils. Adv Soil Sci 10:58–112Google Scholar
  6. Blodau C (2002) Carbon cycling in peatlands: a review of processes and controls. Environ Rev 10:111–134. doi: 10.1139/a02-004 CrossRefGoogle Scholar
  7. Bridgham SD, Pastor J, Janssens JA, Chapin C, Malterer TJ (1996) Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65. doi: 10.1007/BF03160645 CrossRefGoogle Scholar
  8. Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561. doi: 10.1890/0012-9658(1998)079[1545:CNAPMI]2.0.CO;2 CrossRefGoogle Scholar
  9. Bridgham SD, Megonigal P, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916. doi: 10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2 CrossRefGoogle Scholar
  10. Bruland GL, Richardson CJ (2005) Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland. Restor Ecol 13:515–523. doi: 10.1111/j.1526-100X.2005.00064.x CrossRefGoogle Scholar
  11. De Mars H, Wassen MJ, Peeters W (1996) The effect of drainage and management on peat chemistry and nutrient deficiency in the former Jegrznia-floodplain (NE-Poland). Chemical and physical dynamics of fen hydrology. Nederlandse Geografische Studies 203:51–68Google Scholar
  12. Devito KJ, Dillon PJ (1993) The influence of hydrologic conditions and peat oxia on the phosphorus and nitrogen dynamics of a conifer swamp. Water Resour Res 29:2675–2685. doi: 10.1029/93WR00622 CrossRefGoogle Scholar
  13. Devito KJ, Hill AR (1997) Sulphate dynamics in relation to groundwater - surface water interactions in headwater wetlands of the southern Canadian Shield. Hydrol Proc 11(5):485–500. doi: 10.1002/(SICI)1099-1085(199704)11:5<485::AID-HYP455>3.3.CO;2-6 CrossRefGoogle Scholar
  14. Eno CF (1960) Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci Soc Am J 24:277–279CrossRefGoogle Scholar
  15. Environment Canada (2003) National climate data archive [online]. Accessed Dec 2003
  16. Eppinga MB, Rietkerk M, Borren W, Lapshina ED, Bleuten W, Wassen MJ (2008) Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11:520–536CrossRefGoogle Scholar
  17. Eppinga MB, de Ruiter PC, Wassen MJ, Rietkerk M (2009) Nutrients and hydrology indicate the driving mechanisms of peatland surface patterning. Am Nat 173:803–818CrossRefGoogle Scholar
  18. Eppinga MB, Rietkerk M, Belyea LR, Nilsson MB, De Rutter PC, Wassen MJ (2010) Resource contrast in patterned peatlands increases along a climatic gradient. Ecology 91(8):2344–2355CrossRefGoogle Scholar
  19. Hart S, Nason GE, Myrold DD, Perry DA (1994) Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880–891. doi: 10.2307/1939413 CrossRefGoogle Scholar
  20. Holden J, Chapman PJ, Labadz JC (2004) Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog Phys Geogr 28:95–123. doi: 10.1191/0309133304pp403ra CrossRefGoogle Scholar
  21. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Jonasson S, Shaver GR (1999) Within-stand nutrient cycling in arctic and boreal wetlands. Ecology 80:2139–2150. doi: 10.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2 CrossRefGoogle Scholar
  23. Macrae ML, Devito KJ, Redding TE, Creed IF, Bell WR (2005) Soil, surface water and ground water phosphorus relationships in a partially harvested Boreal Plain aspen catchment. For Ecol Manag 206:315–329CrossRefGoogle Scholar
  24. Macrae ML, Creed IF, Macdonald SE, Devito KJ (2006) Relation of soil nitrogen distribution and surface and ground water nitrogen concentrations in harvested and unharvested portions of an aspen-dominated catchment in the Boreal Plain. Can J For Res 36:2090–2103CrossRefGoogle Scholar
  25. Moore TR (1989) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand 1. Maimai. Water Resour Res 25:1321–1330. doi: 10.1029/WR025i006p01321 CrossRefGoogle Scholar
  26. Moore TR, Trofymow JA, Siltanen M, Prescott C, CIDET Working Group (2005) Patterns of decomposition and carbon, nitrogen and phosphorus dynamics of litter in upland forest and peatland sites in central Canada. Can J For Res 35:133–142. doi: 10.1139/X04-149 CrossRefGoogle Scholar
  27. Moser KF, Ahn C, Noe GB (2009) The influence of microtopography on soil nutrients in created mitigation wetlands. Restor Ecol 17:641–651. doi: 10.1111/j.1526-100X.2008.00393.x CrossRefGoogle Scholar
  28. Pavey P, Saint-Hilaire A, Courtenay S, Ouarda T, Bobée B (2007) Exploratory study of suspended sediment concentrations downstream of harvested peat bogs. Environ Monit Assess 13:369–382. doi: 10.1007/s10661-007-9656-8 CrossRefGoogle Scholar
  29. Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692):1926–1929. doi: 10.1126/science.1101867 CrossRefGoogle Scholar
  30. Roulet NE, Moore TR, Bubier J, Lafleur P (1992) Northern fens: methane flux and climatic change. Tellus B 44:100–105. doi: 10.1034/j.1600-0889.1992.t01-1-00002.x CrossRefGoogle Scholar
  31. Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, New YorkCrossRefGoogle Scholar
  32. Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochem Cycles 21:GB1007. doi: 10.1029/2006GB002715
  33. Strack M, Waddington JM, Rochefort L, Tuittila E-S (2006) Response of vegetation and carbon dioxide exchange at different peatland microforms following water table drawdown. J Geophys Res-Biogeosci 111:G02006. doi: 10.1029/2005JG000145 CrossRefGoogle Scholar
  34. Strack M, Waddington JM, Bourbonniere RA, Buckton EL, Shaw K, Whittington P, Price JS (2008) Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol Process 22:3373–3385. doi: 10.1002/hyp.6931 CrossRefGoogle Scholar
  35. Sundstrom E, Magnusson T, Hanell B (2000) Nutrient conditions in drained peatlands along a north-south climatic gradient in Sweden. For Ecol Manag 126:149–161. doi: 10.1016/S0378-1127(99)00098-5 CrossRefGoogle Scholar
  36. Turetsky MR (2003) Bryophytes in carbon and nitrogen cycling. Invited essay for New Frontiers in Bryology and Lichenology. Bryologist 106:395–409. doi: 10.1639/05 CrossRefGoogle Scholar
  37. Updegraff K, Pastor J, Bridgeham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163. doi: 10.2307/1942060 CrossRefGoogle Scholar
  38. Verhoeven JTA, Maltby E, Schmitz MB (1990) Nitrogen and phosphorus mineralization in fens and bogs. J Ecol 78:713–726CrossRefGoogle Scholar
  39. Waddington JM, Strack M, Greenwood MJ (2010) Toward restoring the net carbon sink function of degraded peatlands: short-term response in CO2 exchange to ecosystem-scale restoration. J Geophys Res 115:G01008. doi: 10.1029/2009JG001090 CrossRefGoogle Scholar
  40. Wassen MJ, Olde Venterink H (2006) Comparison of nitrogen and phosphorus fluxes in some European fens and floodplains. Appl Veg Sci 9(2):213–222. doi: 10.1658/1402-2001(2006)9[213:CONAPF]2.0.CO;2 CrossRefGoogle Scholar
  41. Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils. Ecosystems 6:129–143. doi: 10.1007/s10021-002-0124-6 CrossRefGoogle Scholar
  42. Wells ED, Williams BL (1996) Effects of drainage, tilling and PK-fertilization on bulk density, total N, P, K, Ca and Fe and net N-mineralization in two peatland forestry sites in Newfoundland, Canada. For Ecol Manag 84:97–108. doi: 10.1016/0378-1127(96)03741-3 CrossRefGoogle Scholar
  43. Westbrook CJ, Devito KJ (2004) Gross nitrogen transformations in soils from uncut and cut boreal upland and peatland coniferous forest stands. Biogeochemistry 68:33–50. doi: 10.1023/B:BIOG.0000025739.04821.8e CrossRefGoogle Scholar
  44. Whittington PN, Price JS (2006) The effects of water table draw-down (as a surrogate for climate change) on the hydrology of a patterned fen peatland near Quebec City, Quebec. Hydrol Proc 20:3589–3600. doi: 10.1002/hyp.6376 CrossRefGoogle Scholar
  45. Willams BL (1974) Effect of water-table level on nitrogen mineralization in peat. Forestry 47:195–202. doi: 10.1093/forestry/47.2.195 CrossRefGoogle Scholar
  46. Williams RT, Crawford RL (1983) Microbial diversity of Minnesota peatlands. Microb Ecol 9:201–214. doi: 10.1007/BF02097737 CrossRefGoogle Scholar
  47. Williams BL, Wheatley RE (1988) Mineral nitrogen dynamics in poorly drained blanket peat. Biol Fertil Soils 13:96–101. doi: 10.1007/BF00337342 CrossRefGoogle Scholar
  48. Wind-Mulder H, Rochefort L, Vitt DH (1996) Water and peat chemistry comparisons of natural and post-harvested peatlands across Canada and their relevance to peatland restoration. Ecol Eng 7:161–181. doi: 10.1016/0925-8574(96)00004-3 CrossRefGoogle Scholar
  49. Zimenko TG, Misnik AG (1970) Effect of groundwater level on ammonification and nitrification in peat bog soils. Mikrobiologia 39:522–526Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. L. Macrae
    • 1
  • K. J. Devito
    • 2
  • M. Strack
    • 3
  • J. M. Waddington
    • 4
  1. 1.Department of Geography and Environmental ManagementUniversity of WaterlooWaterlooCanada
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Department of GeographyUniversity of CalgaryCalgaryCanada
  4. 4.McMaster Centre for Climate Change and School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations