Skip to main content

Advertisement

Log in

Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Ambient aerosols collected from the marine atmospheric boundary layer of the Bay of Bengal and the Arabian Sea have been studied to assess the fractional solubility of aerosol iron, defined as Fews (%) = Fews/FeTot × 100; where FeTot is total aerosol iron and Fews is water soluble iron. The mass concentration of FeTot over the two oceanic regions is not significantly different. However, the fractional solubility is 1–2 orders of magnitude higher over the Bay of Bengal (1.4–24%) compared to that over the Arabian Sea (0.02–0.4%). The spatio-temporal variability in Fews (%) is attributed to differences in the nature of the mineral dust over the two oceanic regions. The Arabian Sea receives coarse dust from desert regions; whereas transport of alluvial dust from the Indo-Gangetic Plain is a dominant source to the Bay of Bengal. The poor fractional solubility (<1%) of Fe from mineral dust, hitherto overestimated in the literature, is documented for the Arabian Sea. A significant linear relationship (P-value < 0.001) between Fews (%), FeTot and nss-SO4 2− over the Bay of Bengal provides evidence for the chemical processing of mineral dust. Furthermore, the role of anthropogenic sources (biomass burning and fossil-fuel combustion) in enhancing the Fews (%) is discernible from the chemical composition of fine mode (PM2.5) aerosols over the Bay of Bengal. The potential impact of these Fe-dust depositions on phytoplankton carbon fixation and surface ocean biogeochemistry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alappattu DP et al (2007) Spatio-temporal variability of surface-layer turbulent fluxes over the Bay of Bengal and Arabian Sea during the ICARB field experiment. Bound -Layer Meteorol 126:297–309. doi:10.1007/10546-007-9233-2

    Article  Google Scholar 

  • Andreae MO (1983) Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220:1148–1151

    Article  Google Scholar 

  • Baker AR, Croot PL (2010) Atmospheric and marine controls on aerosol iron solubility in seawater. Mar Chem 120:4–13

    Article  Google Scholar 

  • Bange HW, Rixen T, Johansen AM, Siefert RL, Ramesh R, Ittekkot V, Hoffmann MR, Andreae MO (2000) A revised nitrogen budget for the Arabian Sea. Global Biogeochem Cycles 14:1283–1297

    Article  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    Article  Google Scholar 

  • Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  Google Scholar 

  • Buck CS, Landing WM, Resing JA, Lebon GT (2006) Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise. Geochem Geophys Geosyst 7:Q04–M07

    Article  Google Scholar 

  • Buck CS, Landing WM, Resing JA (2010) Particle size and aerosol iron solubility: a high-resolution analysis of Atlantic aerosols. Mar Chem 120:14–24

    Article  Google Scholar 

  • Chuang PY, Duvall RM, Shafer MM, Schauer JJ (2005) The origin of water soluble particulate iron in the Asian atmospheric outflow. Geophys Res Lett 32:L07813

    Article  Google Scholar 

  • Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501

    Article  Google Scholar 

  • Cooper DJ, Watson AJ, Nightingale PD (1996) Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilization. Nature 383:511–513

    Article  Google Scholar 

  • Draxler RR (2002) HYSPLIT-4 user’s guide, NOAA Tech Memo, ERL ARL-230, 35

  • Duce RA, Tindale NW (1991) The atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr 36:1715–1726

    Article  Google Scholar 

  • Guieu C, Bonnet S, Wagener T, Loÿe-Pilot M-D (2005) Biomass burning as a source of dissolved iron to the open ocean? Geophys Res Lett 32:L19608

    Article  Google Scholar 

  • Jickells TD, Spokes LJ (2001) In: Turner DR, Hunter K (eds) The biogeochemistry of iron in seawater. Wiley, Chichester, pp 85–121

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  Google Scholar 

  • Keene WC, Pszenny AP, Gallloway JN, Hawley ME (1986) Sea salt correction and interpretation of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658

    Article  Google Scholar 

  • Kumar A, Sarin MM (2010) Aerosol iron solubility in a semi-arid region: temporal trend and impact of anthropogenic sources. Tellus B 62:125–132

    Article  Google Scholar 

  • Kumar A, Sarin MM, Sudheer AK (2008a) Mineral and anthropogenic aerosols in Arabian Sea-atmospheric boundary layer: sources and spatial variability. Atmos Environ 42:5169–5181

    Article  Google Scholar 

  • Kumar A, Sudheer AK, Sarin MM (2008b) Chemical characteristics of aerosols in MABL of Bay of Bengal and Arabian Sea during spring inter-monsoon: a comparative study. J Earth Syst Sci. 117(S1):325–332

    Article  Google Scholar 

  • Kumar A, Sarin MM, Srinivas B (2010) Aerosol iron solubility over Bay of Bengal: role of anthropogenic sources and chemical processing. Mar Chem 121:167–175

    Article  Google Scholar 

  • Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat ATJ, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

    Article  Google Scholar 

  • Luo C, Mahowald NM, Meskhidze N, Chen Y, Siefert RL, Baker AR, Johansen AM (2005) Estimation of iron solubility from observations and a global aerosol model. J Geophys Res 110:307

    Article  Google Scholar 

  • Luo C, Mahowald N, Bond T, Chuang PY, Artaxo P, Siefert R, Chen Y, Schauer J (2008) Combustion iron distribution and deposition. Global Biogeochem Cycles 22:GB1012

    Article  Google Scholar 

  • Madhu NV, Jyothibabu R, Maheswaran PA, John Gerson V, Gopalakrishnan TC, Nair KKC (2006) Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal. Cont Shelf Res 26:1868–1883

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19:GB4025

    Article  Google Scholar 

  • Mahowald N, Engelstaedter S, Luo C, Sealy A, Artaxo P, Chen Y, Chuang PY, Cohen DD, Dulac F, Herut B, Johansen AM, Kubilay N, Losno R, Maenhaut W, Paytan A, Prospero JM, Shank LM, Siefert RL (2009) Atmospheric iron deposition: global distribution, variability and human perturbations. Annu Rev Mar Sci 1:245–278. doi:210.1146/annurev.marine.010908.163727

    Article  Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  Google Scholar 

  • Meskhidze N, Chameides WL, Nenes A, Chen G (2003) Iron mobilization in mineral dust: can anthropogenic SO2 emissions affect ocean productivity? Geophys Res Lett 30:2085

    Article  Google Scholar 

  • Moore JK, Doney SC, Glover DM, Fung IY (2002) Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Res., Part II 49:463–507

    Article  Google Scholar 

  • Naqvi SWA, Moffett JW, Gauns MU, Narvekar PV, Pratihary AK, Naik H, Shenoy DM, Jayakumar DA, Goepfert TJ, Patra PK, Al-Azri A, Ahmed SI (2010) The arabian sea as a high-nutrient, low-chlorophyll region during the late southwest monsoon. Biogeosciences 7:2091–2100

    Article  Google Scholar 

  • Okin GS, Baker AR, Tegen I, Mahowald NM, Dentener FJ, Duce RA, Galloway JN, Hunter K, Kanakidou M, Kubilay N, Prospero JM, Sarin M, Surapipith V, Uematsu M, Zhu T (2011) Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus, and iron. Global Biogeochem Cycles 25:GB2022

    Article  Google Scholar 

  • Pal R (2009) Potassium as a marker of crop residue burning in total suspended particulate matter in ambient air of patiala. A thesis submitted for the degree of M. Tech in Environmental Science and Technology, Thapar University, Patiala

  • Paris R, Desboeufs KV, Formenti P, Nava S, Chou C (2010) Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility. Atmos. Chem. Phys. 10:4273–4282

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112:D21307

    Article  Google Scholar 

  • Sawant S, Madhupratap M (1996) Seasonality and composition of phytoplankton in the Arabian Sea. Curr Sci 71:869–873

    Google Scholar 

  • Schlitzer R (2002) Interactive analysis and visualization of geoscience data with ocean data view. Comput Geosci 28:1211–1218

    Article  Google Scholar 

  • Schroth AW, Crusius J, Sholkovitz ER, Bostick BC (2009) Iron solubility driven by speciation in dust sources to the ocean. Nature Geosci 2:337–340

    Article  Google Scholar 

  • Sedwick PN, Sholkovitz ER, Church TM (2007) Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem Geophys Geosyst 8:Q10Q06

    Article  Google Scholar 

  • Sholkovitz ER, Sedwick PN, Church TM (2009) Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: empirical estimates for island sites in the North Atlantic. Geochim Cosmochim Acta 73:3981–4003

    Article  Google Scholar 

  • Siefert RL, Johansen AM, Hoffmann MR (1999) Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Labile-Fe(II) and other trace metals. J Geophys Res 104:3511–3526

    Article  Google Scholar 

  • Solmon F, Chuang PY, Meskhidze N, Chen Y (2009) Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. J Geophys Res 114:D02305

    Article  Google Scholar 

  • Sudheer AK, Sarin MM (2008) Carbonaceous aerosols in MABL of Bay of Bengal: influence of continental outflow. Atmos Environ 42:4089–4100

    Article  Google Scholar 

  • Tripathi JK, Ghazanfari P, Rajamani V, Tandon SK (2007) Geochemistry of sediments of the Ganges alluvial plains: evidence of large-scale sediment recycling. Quat Int 159:119–130

    Article  Google Scholar 

  • Turner SM, Nightingale PD, Spokes LJ, Liddicoat MI, Liss PS (1996) Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment. Nature 383:513–517

    Article  Google Scholar 

  • Wedepohl HK (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Wiggert JD, Murtugudde RG, Christian JR (2006) Annual ecosystem variability in the tropical Indian Ocean: results of a coupled bio-physical ocean general circulation model. Deep Sea Res Part II Top Stud Oceanogr 53:644–676

    Article  Google Scholar 

  • Yadav S, Rajamani V (2004) Geochemistry of aerosols of northwestern part of India adjoining the Thar desert. Geochim Cosmochim Acta 68:1975–1988

    Article  Google Scholar 

  • Zhuang G, Yi Z, Duce RA, Brown PR (1992) Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols. Nature 355:537–539

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the office of ISRO-GBP (Bangaluru, India) as a part of national programme on Integrated Campaign on Aerosols Trace Gases and Radiation Budget (ICARB-2009). We are thankful to the chief scientist (Dr. C.B.S. Dutt) for his meticulous organization of the campaign and help in logistics. We also wish to thank Captain and crew members of the ORV Sagar Kanya for their help during the cruise. The computational help provided by Dr. Gyana Ranjan Tripathy and comments received from two anonymous reviewers and Guest Editor (Dr. Maurice Levasseur) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Sarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivas, B., Sarin, M.M. & Kumar, A. Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea. Biogeochemistry 110, 257–268 (2012). https://doi.org/10.1007/s10533-011-9680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9680-1

Keywords

Navigation