, Volume 111, Issue 1–3, pp 1–39 | Cite as

The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives

  • Jordi Sardans
  • Albert Rivas-Ubach
  • Josep Peñuelas
Synthesis and Emerging Ideas


C, N and P are three of the most important elements used to build living beings, and their uptake from the environment is consequently essential for all organisms. We have reviewed the available studies on water, soils and organism elemental content ratios (stoichiometry) with the aim of identifying the general links between stoichiometry and the structure and function of organisms and ecosystems, in both aquatic and terrestrial contexts. Oceans have variable C:N:P ratios in coastal areas and a narrow range approximating the Redfield ratio in deep water and inner oceanic areas. Terrestrial ecosystems have a general trend towards an increase in soil and plant N:P ratios from cool and temperate to tropical ecosystems, but with great variation within each climatic area. The C:N:P content ratio (from now on C:N:P ratio) is more constrained in organisms than in the water and soil environments they inhabit. The capacity to adjust this ratio involves several mechanisms, from leaf re-absorption in plants to the control of excretion in animals. Several differences in C:N:P ratios are observed when comparing different taxa and ecosystems. For freshwater ecosystems, the growth rate hypothesis (GRH), which has consistent experimental support, states that low N:P supply determines trophic web structures by favoring organisms with a high growth rate. For terrestrial organisms, however, evidence not yet conclusive on the relevance of the GRH. Recent studies suggest that the N:P ratio could play a role, even in the evolution of the genomes of organisms. Further research is warranted to study the stoichiometry of different trophic levels under different C:N:P environment ratios in long-term ecosystem-scale studies. Other nutrients such as K or Fe should also be taken into account. Further assessment of the GRH requires more studies on the effects of C:N:P ratios on anabolic (growth), catabolic (respiration), storage and/or defensive allocation. Combining elemental stoichiometry with metabolomics and/or genomics should improve our understanding of the coupling of different levels of biological organization, from elemental composition to the structure and evolution of ecosystems, via cellular metabolism and nutrient cycling.


Climate gradients Competition Diversity Herbivore–predator Plant–herbivore Redfield’s ratio 



This research was supported by European project NEU NITROEUROPE (GOCE017841), by Spanish Government projects CGL2006-04025/BOS, CGL2010-17172 and Consolider-Ingenio Montes CSD2008-00040, and by Catalan Government project SGR 2009-458.


  1. Acharya K, Kyle M, Elser JJ (2004) Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol Oceanogr 49:656–665CrossRefGoogle Scholar
  2. Acquisti C, Elser JJ, Kumar S (2009) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26:953–956CrossRefGoogle Scholar
  3. Ågren GI (2004) The C:N:P stoichiometry of autotrophs—theory and observations. Ecol Lett 7:185–191CrossRefGoogle Scholar
  4. Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Syst 39:153–170CrossRefGoogle Scholar
  5. Amatangelo KL, Vitousek PM (2008) Stoichiometry of ferns in Hawaii: implications for nutrient cycling. Oecologia 157:619–627CrossRefGoogle Scholar
  6. An H, Shangguan ZP (2010) Leaf stoichiometry trait and specific leaf area of dominant species in the secondary succession of the loess plateau. Pol J Ecol 58:103–113Google Scholar
  7. Andersen T (1997) Pelagic nutrient cycle: herbivores as sources and sinks. Springer, New YorkGoogle Scholar
  8. Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814CrossRefGoogle Scholar
  9. Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7:884–900CrossRefGoogle Scholar
  10. Andersen T, Faevoring PJ, Hessen DO (2007) Growth rate versus biomass accumulation: different roles of food quality and quantity for consumers. Limnol Oceanogr 52:2128–2134CrossRefGoogle Scholar
  11. Anderson TR, Boersma M, Raubenheimer D (2004) Stoichiometry: linking elements to biochemicals. Ecology 85:1193–1202CrossRefGoogle Scholar
  12. Anderson TR, Hessen DO, Elser JJ, Urabe J (2005) Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. Am Nat 165:1–15CrossRefGoogle Scholar
  13. Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional change in phosphorus stoichiometry explains the inverse relationship between herbivory and lupin density on Mount St. Helens. PLoS One 4:e7807CrossRefGoogle Scholar
  14. Baek JH, Sang YL (2007) Transcriptome analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244–252Google Scholar
  15. Bertram SM, Bowden M, Kyle M, Schade JD (2007) Extensive natural intraspecific variation in stoichiometric (C:N:P) composition in two terrestrial insect species. J Insect Sci 8:1536–2442Google Scholar
  16. Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87:1325–1330CrossRefGoogle Scholar
  17. Boersma M, Wiltshire KH (2006) Gut passage of phosphorus-limited algae through Daphnia: do they take up nutrients in the process? Arch Hydrobiol 167:489–500CrossRefGoogle Scholar
  18. Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire K, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488CrossRefGoogle Scholar
  19. Boersma M, Becker C, Malzahn AM, Vernooij S (2009) Food chain effects of nutrient limitation in primary producers. Mar Freshw Res 60:983–989CrossRefGoogle Scholar
  20. Boeye D, Verhagen B, Van Haesebroek V, Verheyen RF (1997) Nutrient limitation in species-rich lowland fens. J Veg Sci 8:415–424CrossRefGoogle Scholar
  21. Bott T, Meyer G, Meyer A, Young EB (2008) Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. New Phytol 180:631–641CrossRefGoogle Scholar
  22. Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hajek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constrains in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–616CrossRefGoogle Scholar
  23. Bridgham SD, Pastor J, McClaugherty CA, Richardson CJ (1995) Nutrient-use efficiency: a litterfall index: a model, and a test along a nutrient-availability gradient in North Carolina peatlands. Am Nat 145:1–21CrossRefGoogle Scholar
  24. Britton A, Fisher J (2007) NP stoichiometry of low-alpine heathland: usefulness for bio-monitoring and prediction of pollutant impacts. Biol Conserv 138:100–108CrossRefGoogle Scholar
  25. Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55:321–336CrossRefGoogle Scholar
  26. Broecker WS, Peng TH (1982) Traces in the sea. Lamont-Doherty Geological Observatory, Columbia University, PalisadesGoogle Scholar
  27. Cáceres CE, Tessier AJ, Andreou A, Duffy MA (2008) Stoichiometric relationships in vernal pond plankton communities. Freshw Biol 53:1291–1302Google Scholar
  28. Carline KA, Jones HE, Bardgett RD (2005) Large herbivores affect the stoichiometry of nutrients in a regenerating woodland ecosystem. Oikos 110:453–460CrossRefGoogle Scholar
  29. Carrillo P, Villar-Argaiz M, Medina-Sánchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: an in situ measurement. J Plankton Res 23:537–547CrossRefGoogle Scholar
  30. Carrillo P, Villar-Argaiz M, Medina-Sánchez JM (2008) Does microorganism stoichiometry predict microbial food web interactions alter a phosphorus pulse? Microb Ecol 56:350–363CrossRefGoogle Scholar
  31. Castle SG, Neff JG (2009) Plant response to nutrient availability across variable bedrock geologies. Ecosystems 12:101–113CrossRefGoogle Scholar
  32. Cebrian J, Shurin JB, Borer ET, Cardinale BJ, Ngai JT, Smith MD, Fagan WF (2009) Producer nutritional quality controls ecosystem trophic structure. PLoS One 4:e4929CrossRefGoogle Scholar
  33. Cernusak LA, Winter K, Turner BL (2010) Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment to physiological and environmental controls. New Phytol 185:770–779CrossRefGoogle Scholar
  34. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497CrossRefGoogle Scholar
  35. Chen MM, Yin HB, O’Connor P, Wang YS, Zhu YG (2010) C:N:P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326:21–29CrossRefGoogle Scholar
  36. Christian AD, Crump BG, Berg DJ (2008) Nutrient release and ecological stoichiometry of freshwater mussels (Mollusca:Unionidae) in 2 small, regionally distinct streams. J North Am Benthol Soc 27:440–450CrossRefGoogle Scholar
  37. Chrzanowski TH, Lukomski CN, Grover JP (2010) Elemental stoichiometry of a mixotrophic protest grown under varying resource conditions. J Eukaryot Microbiol 57:322–327CrossRefGoogle Scholar
  38. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252CrossRefGoogle Scholar
  39. Conde-Porcuna JM, Ramos-Rodríguez E, Pérez-Martínez C (2002) Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshw Biol 47:1463–1473CrossRefGoogle Scholar
  40. Cotner JB, Makino W, Biddanda BA (2006) Temperature effects stoichiometry and biochemical composition of Escherichia coli. Microb Ecol 52:26–33CrossRefGoogle Scholar
  41. Craine JM, Morrow C, Stock WD (2008) Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol 179:829–836CrossRefGoogle Scholar
  42. Cross WF, Benstead JF, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–1912CrossRefGoogle Scholar
  43. Cross WF, Wallace JB, Rosemond AD (2007) Nutrient enrichment reduces constrains on material flows in a detritus-based food web. Ecology 88:2563–2575CrossRefGoogle Scholar
  44. D’Annunzio R, Zeller B, Nicolas M, Dhôte JF, Saint-André L (2008) Decomposition of European beech (Fagus sylvatica) litter: combining quality theory and 15N labeling experiments. Soil Biol Biochem 40:322–333CrossRefGoogle Scholar
  45. Danger M, Oumarou C, Benest D, Lacroix G (2007) Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Funct Ecol 21:202–210CrossRefGoogle Scholar
  46. Danger M, Lacroix G, Oumarou C, Benest D, Meriguet J (2008) Effects of food-web structure on periphyton stoichiometry in eutrophic lakes: a mesocosm study. Freshw Biol 53:2089–2100CrossRefGoogle Scholar
  47. Danger M, Lacroix G, Ka S, Ndour EH, Corbin D, Lazzaro X (2009) Food-web structure and functioning of temperature and tropical lakes: a stoichiometric viewpoint. Ann Limnol Int J Limnol 45:11–21CrossRefGoogle Scholar
  48. Dantas MC, Attayde JL (2007) Nitrogen and phosphorus content of some temperate and tropical freshwater fishes. J Fish Biol 70:100–108CrossRefGoogle Scholar
  49. Darchambeau F, Faerovig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346CrossRefGoogle Scholar
  50. Darchambeau F, Thys I, Leporcq B, Hoffmann L, Descy JP (2005) Influence of zooplankton stoichiometry on nutrient sedimentation in a lake system. Limnol Oceanogr 50:905–913CrossRefGoogle Scholar
  51. Das K, Dang R, Shivananda TN (2006) Effect of N, P and K fertilizers on their availability in soil in relation to the Stevia plant (Stevia rebaudiana Bert.). Arch Agron Soil Sci 52:679–685CrossRefGoogle Scholar
  52. Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449:1000–1001CrossRefGoogle Scholar
  53. Davidson EA, Reis de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nutrient cycling in Amazonian forest following agricultural abandonment. Nature 447:995–998CrossRefGoogle Scholar
  54. de Eyto E, Irvine K (2007) Assessing the status of shallow lakes using an additive model of biomass size spectra. Aquat Conserv Mar Freshw Ecosyst 17:724–736CrossRefGoogle Scholar
  55. DeMott WR (2003) Implications of element deficits for zooplankton growth. Hydrobiologia 491:177–184Google Scholar
  56. DeMott WR, Pape BJ (2005) Stoichiometry in an ecological context: testing for links between Daphnia P-content, growth rate and habitat preference. Oecologia 142:20–27CrossRefGoogle Scholar
  57. DeMott WR, Tessier AJ (2002) Stoichiometry constrains vs. algal defenses: testing mechanisms of zooplankton for limitation. Ecology 83:3426–3433CrossRefGoogle Scholar
  58. DeMott WR, Pape BJ, Tessier AJ (2004) Patterns and sources of variation in Daphnia phosphorus content in nature. Aquat Ecol 38:433–440CrossRefGoogle Scholar
  59. Denno RF, Fagan WF (2003) Might nitrogen limitation promote omnivory among carnivorous arthropods. Ecology 84:2522–2531CrossRefGoogle Scholar
  60. Dickman EM, Vanni MJ, Horgan MJ (2006) Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149:676–689CrossRefGoogle Scholar
  61. Dickman EM, Newell JM, González MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Natl Acad Sci USA 105:18408–18412CrossRefGoogle Scholar
  62. Diehl S (2007) Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems. Am Nat 169:E173–E191CrossRefGoogle Scholar
  63. Dobberfuhl DR, Elser JJ (2000) Elemental stoichiometry of lower food web components in arctic and temperate lakes. J Plankton Res 22:1341–1354CrossRefGoogle Scholar
  64. Doering PH, Oviatt CA, Nowicki BL, Klos EG, Reed LW (1995) Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient. Mar Ecol Prog Ser 124:271–287CrossRefGoogle Scholar
  65. Downing JA (1997) Marine nitrogen: phosphorus stoichiometry and the global N:P cycle. Biogeochemistry 37:237–252CrossRefGoogle Scholar
  66. Downing JA, Osenberg GW, Sarnelle O (1999) Meta-analysis of marine nutrient-enrichment experiment: variation in the magnitude of nutrient limitation. Ecology 80:1157–1167CrossRefGoogle Scholar
  67. Duarte CM, Lucea A, Sondergaard M (2004) The effect of nutrient additions on the partitioning of nutrients in an experimental coastal Mediterranean system. Biogeochemistry 68:153–167CrossRefGoogle Scholar
  68. Eisele lKA, Schimel DS, Kaputska LA, Parton WJ (1989) Effects of available P and N and N:P ratios on non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79:471–474CrossRefGoogle Scholar
  69. Elser JJ (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168:525–535CrossRefGoogle Scholar
  70. Elser JJ, George NB (1993) The stoichiometry of N and P in the pelagic zone of Castle lake, California. J Plankton Res 15:977–992CrossRefGoogle Scholar
  71. Elser JJ, Hamilton A (2007) Stoichiometry and the new biology: the future is now. PLoS Biol 5:1403–1405CrossRefGoogle Scholar
  72. Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations and consequences. Ecology 80:735–750CrossRefGoogle Scholar
  73. Elser JJ, Chrzanowski TH, Sterner RW, Schampel JH, Foster DK (1995) Elemental ratios and the uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian Shield. Microb Ecol 29:145–162CrossRefGoogle Scholar
  74. Elser JJ, Dobberfuhl D, Mackay NA, Schampel IH (1996) Organism size, life history and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioScience 46:674–684CrossRefGoogle Scholar
  75. Elser JJ, Chzanowski TH, Sterner RW, Mills KH (1998) Stoichiometric constrains on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems 1:120–136CrossRefGoogle Scholar
  76. Elser JJ, Sterner RW, Galford AE, Chrzanowski TH, Findalay DL, Mills KH, Paterson MJ, Stainton MP, Schindler DW (2000a) Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems 3:293–307CrossRefGoogle Scholar
  77. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann H, Sterner RW (2000b) Nutritional constrains in terrestrial and freshwater food webs. Nature 408:578–580CrossRefGoogle Scholar
  78. Elser JJ, Sterner RW, Gorokhova F, Fagan WF, Markov TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000c) Biological stoichiometry from genes to ecosystem. Ecol Lett 5:540–550CrossRefGoogle Scholar
  79. Elser JJ, Hayakawa K, Urabe I (2001) Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82:898–903Google Scholar
  80. Elser JJ, Kyle AM, Cotner J, Makino W, Markov T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943CrossRefGoogle Scholar
  81. Elser JJ, Schampel JH, García-Pichel F, Wade BD, Souza V, Eguiarte L, Escalante A, Farmer JD (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw Biol 50:1808–1825CrossRefGoogle Scholar
  82. Elser JJ, Watts T, Bitler B, Markovw TA (2006) Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Funct Ecol 20:846–856CrossRefGoogle Scholar
  83. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Hgai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary procedures in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1147CrossRefGoogle Scholar
  84. Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608CrossRefGoogle Scholar
  85. Esmeijer-Liu AJ, Aerts R, Kürschner WN, Bobbink R, Lotter AF, Verhoeven JTA (2009) Nitrogen enrichment lowers Betula pendula green and yellow leaf stoichiometry irrespective of effects of elevated carbon dioxide. Plant Soil 316:311–322CrossRefGoogle Scholar
  86. Evans-White M, Lamberti GA (2006) Stoichiometry of consumer-driven nutrient recycling across nutrient regimes in streams. Ecol Lett 9:1186–1197CrossRefGoogle Scholar
  87. Evans-White MA, Dodds WK, Huggins DG, Baker DS (2009) Thresholds in macroinvertebrate biodiversity and stoichiometry across water-quality gradients in Central Plains (USA) streams. J North Am Benthol Soc 28:855–868CrossRefGoogle Scholar
  88. Faerovic PJ, Hessen DO (2003) Allocation strategies in crustacean stoichiometry: the potential role of phosphorus in the limitation of reproduction. Freshw Biol 48:1782–1792CrossRefGoogle Scholar
  89. Fagan WF, Denno RF (2004) Stoichiometry of actual vs. potential predator-prey interactions: insights into nitrogen limitation for arthropod predator. Ecol Lett 7:876–883CrossRefGoogle Scholar
  90. Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802CrossRefGoogle Scholar
  91. Falkowsky PG, Davis CS (2004) Natural proportions. Redfield ratios: the uniformity of elemental ratios in the oceans and the life they contain underpins our understanding of marine biogeochemistry. Nature 431:131CrossRefGoogle Scholar
  92. Feller I, Lovelock CE, Mckee KL (2007) Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems 10:347–359CrossRefGoogle Scholar
  93. Ferrao-Filho ADS, Tessier AJ, DeMott WR (2007) Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: testing stoichiometry theory and the growth rate hypothesis. Limnol Oceanogr 52:407–415CrossRefGoogle Scholar
  94. Ferrao-Filho ADS, Fileto C, Lopes NP, Arcifa MS (2003) Effects of essential fatty acids and N and P-limited algae on the growth rate of tropical cladocerans. Freshw Biol 48:759–767CrossRefGoogle Scholar
  95. Ferrao-Filho ADS, DeMott WR, Tessier AJ (2005) Response of tropical cladocerans to a gradient of resource quality. Freshw Biol 50:954–964CrossRefGoogle Scholar
  96. Findlay DL, Vanni MJ, Paterson M, Mills KH, Kasian SEM, Findlay WJ, Salki AG (2005) Dynamics of a boreal lake ecosystem during a long-term manipulations of top predators. Ecosystems 8:603–618CrossRefGoogle Scholar
  97. Finlay JC, Sterner RW, Kumar S (2007) Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecol Appl 17:2323–2332CrossRefGoogle Scholar
  98. Fitter A, Hillebrand H (2009) Microbial food web structure affects bottom-up effects and elemental stoichiometry in periphyton assemblages. Limnol Oceanogr 54:2183–2200CrossRefGoogle Scholar
  99. Flynn KJ, Raven JA, Rees TAV, Finkel Z, Quigg A, Beardall J (2010) Is the growth rate hypothesis applicable to microalgae? J Phycol 46:1–12CrossRefGoogle Scholar
  100. Frost PC, Elser JJ (2002) Growth responses of littoral mayflies to the phosphorus content of their food. Ecol Lett 5:232–240CrossRefGoogle Scholar
  101. Fox LE, Sager SL, Wofsy SC (1985) Factors controlling the concentrations of soluble phosphorus in the Mississippi estuary. Limnol Oceanogr 30:826–832CrossRefGoogle Scholar
  102. Frank DA (2008) Ungulate and topographic control of nitrogen: phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates. Oikos 117:591–601CrossRefGoogle Scholar
  103. Frost PC, Ebert D, Smith VH (2008a) Bacterial infection changes the elemental composition of Daphnia magna. J Anim Ecol 77:1265–1272CrossRefGoogle Scholar
  104. Frost PC, Ebert D, Smith VH (2008b) Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host. Ecology 89:313–318CrossRefGoogle Scholar
  105. Frost PC, Ebert D, Larson JH, Marcus MA, Wagner ND, Zalewski A (2010) Transgenerational effects of poor elemental food quality on Daphnia magna. Oecologia 162:865–872CrossRefGoogle Scholar
  106. Fu FX, Zhang Y, Leblanc K, Sañudo-Wilhelmy SA, Hutchins DA (2005) The biological and biochemical consequences of phosphate scavenging onto phytoplankton cell surfaces. Limnol Oceanogr 50:1459–1472CrossRefGoogle Scholar
  107. Ganeshram RS, Pedersen TF, Calvert SE, François R (2002) Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415:156–159CrossRefGoogle Scholar
  108. Geider RJ, Roche JL (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17CrossRefGoogle Scholar
  109. Gillooly JF, Allen AP, Brown JH, Elser JJ, Martínez del Rio C, Savage VM, West GB, Woodruff WH, Woods HA (2005) The metabolic basis of whole-organism RNA and phosphorus content. Proc Natl Acad Sci USA 102:11923–11927CrossRefGoogle Scholar
  110. Gismervik I (1997) Stoichiometry of some marine planktonic crustaceans. J Plankton Res 19:279–285CrossRefGoogle Scholar
  111. Gladyshev MI, Sushchik NN, Kolmakova AA, Kalachova GS, Kravchuk ES, Ivanova EA, Makhutova ON (2007) Seasonal correlations of elemental and w3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian Reservoir. Aquat Ecol 41:9–23CrossRefGoogle Scholar
  112. Goldman JC (1986) On phytoplankton growth rates and particulate C:N:P. Limnol Oceanogr 31:1358–1363CrossRefGoogle Scholar
  113. Goldman JG, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215CrossRefGoogle Scholar
  114. Gorokhova E, Dowling TE, Weider LJ, Crease TJ, Elser JJ (2002) Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proc R Soc Lond B Biol Sci 269:2373–2379CrossRefGoogle Scholar
  115. Greenwood DJ, Karpinets TV, Zhang K, Bosh-Serra A, Boldrini A, Karawulova L (2008) A unifying concept for the dependence of whole-crop N/P ratio on biomass: theory and experiment. Ann Bot 102:967–977CrossRefGoogle Scholar
  116. Griffiths D (2006) The direct contribution of fish to lake phosphorus cycles. Ecol Freshw Fish 15:86–95CrossRefGoogle Scholar
  117. Grossman A (2000) Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist 151:201–224CrossRefGoogle Scholar
  118. Grover P (2003) The impact of variable stoichiometry on predator-prey interactions: a multinutrient approach. Am Nat 162:29–43CrossRefGoogle Scholar
  119. Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem CyclesGoogle Scholar
  120. Gulati RD, DeMott WR (1997) The food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw Biol 38:753–768CrossRefGoogle Scholar
  121. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  122. Güsewell S, Bollens U (2003) Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic Appl Ecol 4:453–466CrossRefGoogle Scholar
  123. Güsewell S, Gessner MO (2009) N:P ratios influence their litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219CrossRefGoogle Scholar
  124. Güsewell S, Koerselman W (2002) Variation in nitrogen and phosphorus concentration of wetland plants. Perspect Plant Ecol Evol Syst 5:37–61CrossRefGoogle Scholar
  125. Güsewell S, Koerselman W, Verhoeven JTA (2003a) Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384CrossRefGoogle Scholar
  126. Güsewell S, Bollens U, Ryser P, Klötzli F (2003b) Contrasting effects of nitrogen, phosphorus and water regime on first- and second-year growth of 16 wetland plant species. Funct Ecol 17:754–765CrossRefGoogle Scholar
  127. Güsewell S, Bailey KM, Roem WJ, Bedford BI (2005) Nutrient limitation and botanical diversity in wetlands: can fertilization raise species richness? Oikos 109:71–80CrossRefGoogle Scholar
  128. Hall SR (2004) Stoichiometry explicit competition between grazers: species replacement, coexistence and priority effects along resource supply gradients. Am Nat 164:157–172CrossRefGoogle Scholar
  129. Hall SH, Leibold MA, Lytle DA, Smith VH (2004) Stoichiometry and planktonic grazer composition over gradients of light, nutrients and predation risk. Ecology 85:2291–2301CrossRefGoogle Scholar
  130. Hall SH, Smith VH, Lytle DA, Leibold MA (2005) Constrains of primary producer N:P stoichiometry along N:P supply ratio gradients. Ecology 86:1894–1904CrossRefGoogle Scholar
  131. Hall SR, Leibold MA, Lytle DA, Smith VH (2007) Grazers, producers stoichiometry, and the light: nutrient hypothesis revised. Ecology 88:1142–1152CrossRefGoogle Scholar
  132. Hambäck PA, Gilbert J, Schneider K, Martinson HM, Kolb G, Fagan WF (2009) Effects of body size, trophic mode and larval habitat on Diptera stoichiometry: a regional comparison. Oikos 118:615–623Google Scholar
  133. Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385CrossRefGoogle Scholar
  134. Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 466:791–793CrossRefGoogle Scholar
  135. Harrison PJ, Yin K, Lee JHW, Gan J, Liu H (2008) Physical-biological coupling in the Pearl River Estuary. Cont Shelf Res 28:1405–1415CrossRefGoogle Scholar
  136. Hassett RP, Cardinale B, Stabler LB, Elser JJ (1997) Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnol Oceanogr 42:648–662CrossRefGoogle Scholar
  137. Hättenschwiler S, Aeschlimann B, Couteaux MM, Roy J, Bonal D (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175CrossRefGoogle Scholar
  138. He JS, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006) Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149:115–122CrossRefGoogle Scholar
  139. He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008) Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310CrossRefGoogle Scholar
  140. Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724CrossRefGoogle Scholar
  141. Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255CrossRefGoogle Scholar
  142. Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635CrossRefGoogle Scholar
  143. Hendrixson HA, Sterner RW, Kay AD (2007) Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J Fish Biol 70:121–140CrossRefGoogle Scholar
  144. Hessen DO, Faerovig PJ, Andersen T (2002) Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83:1886–1896CrossRefGoogle Scholar
  145. Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192CrossRefGoogle Scholar
  146. Hessen DO, Jensen TC, Kyle M, Elser JJ (2007) RNA responses to N- and P- limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct Ecol 21:956–962CrossRefGoogle Scholar
  147. Hessen DO, Leu E, Faerovig PJ, Falk Petersen S (2008a) Light and spectral properties as determinants of C:N:P ratios in phytoplankton. Deep Sea Res II 55:2169–2175CrossRefGoogle Scholar
  148. Hessen DO, Ventura M, Elser JJ (2008b) Do phosphorus requirements for RNA limit genome size in crustacean zooplankton? Genome 51:685–691CrossRefGoogle Scholar
  149. Higgins KA, Vanni MJ, González MJ (2006) Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos 114:419–430CrossRefGoogle Scholar
  150. Hillebrand H, Kahlert M (2001) Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnol Oceanogr 46:1881–1898CrossRefGoogle Scholar
  151. Hillebrand H, Frost P, Liess A (2008) Ecological stoichiometry of indirect grazer effects on periphyton nutrient content. Oecologia 155:619–630CrossRefGoogle Scholar
  152. Hillebrand H, Gamfeldt L, Jonsson R, Matthiessen B (2009) Consumer diversity indirectly changes prey nutrient content. Mar Ecol Prog Ser 380:33–41CrossRefGoogle Scholar
  153. Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159CrossRefGoogle Scholar
  154. Högberg MN, Myrold DD, Giesler R, Högberg P (2006) Contrasting patterns of soil N-Cycling in model ecosystems of Fennoscandian boreal forest. Oecologia 147:96–107CrossRefGoogle Scholar
  155. Holl CM, Montoya JP (2008) Diazotrophic growth of the marine cyanobacterium Trichodesmium IMS101 in continuous culture: effects of growth rate on N2-fixation rate, biomass, and C:N:P stoichiometry. J Phycol 44:929–957CrossRefGoogle Scholar
  156. Hong YG, Yin B, Zheng TL (2011) Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific. Appl Microbiol Biotechnol 89:1233–1241CrossRefGoogle Scholar
  157. Hopkinson CS, Vallino JJ (2005) Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433:142–145CrossRefGoogle Scholar
  158. Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701CrossRefGoogle Scholar
  159. Interlandi SJ, Kilham SS (2001) Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82:1270–1282CrossRefGoogle Scholar
  160. Jaenike J, Markow T (2003) Comparative elemental stoichiometry of ecologically diverse Drosophila. Funct Ecol 17:115–120CrossRefGoogle Scholar
  161. Jäger CG, Diehl S, Matatuschek C, Klausmeier CA, Stibor H (2008) Transient dynamics of pelagic producer-grazer systems in a gradient of nutrients and mixing depths. Ecology 89:1272–1286CrossRefGoogle Scholar
  162. Jensen T, Anderson TR, Daufresne M, Hessen DO (2006) Does excess carbon affect respiration of the rotifer Brachionus calyciflorus Pallas? Freshw Biol 51:2320–2333CrossRefGoogle Scholar
  163. Jeyasingh PD, Weider LJ (2005) Phosphorus availability mediates plasticity in life-history traits and predator-prey interactions in Daphnia. Ecol Lett 8:1021–1028CrossRefGoogle Scholar
  164. Jeyasingh PD, Weider LJ (2007) Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry. Mol Biol 16:4649–4661Google Scholar
  165. Jeyasingh PD, Weider LJ, Sterner RW (2009) Genetically-based trade-off in response to stoichiometry food quality influence competition in a keystone aquatic herbivore. Ecol Lett 12:1–9CrossRefGoogle Scholar
  166. Jeyasingh PD, Ragavendran A, Paland S, López JA, Sterner RW, Colbourne JK (2011) How do consumers deal with stoichiometric constrains? Lessons from functional genomics using Daphnia pulex? Mol Ecol (in press)Google Scholar
  167. Jonas JL, Joern A (2008) Host-plant quality alters grass/forb consumption by a mixed-feeding insect herbivore, Melanoplus bivittatus (Orthoptera: Arcrididae). Ecol Entomol 33:546–554CrossRefGoogle Scholar
  168. Kagata H, Katayama N (2006) Does nitrogen limitation promote intraguild predation in an aphidophagous ladybird? Entomol Exp Appl 119:239–246CrossRefGoogle Scholar
  169. Kagata H, Ohgushi T (2006) Nitrogen homeostasis in a willow leaf beetle Plasiodera versicolora, is independent of host plant quality. Entomol Exp Appl 118:105–110CrossRefGoogle Scholar
  170. Kagata H, Ohgushi T (2007) Carbon-nitrogen stoichiometry in the tritrophic food chain willow, leaf bettle, and predatory ladybird beetle. Ecol Res 22:671–677CrossRefGoogle Scholar
  171. Karl DM, Letelier RM (2008) Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268CrossRefGoogle Scholar
  172. Karpinets TV, Greenwood DJ, Sams CE, Ammons JT (2006) RNA:protein ratio of the unicellular organism as a characteristic of phosphorus and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol 4:30CrossRefGoogle Scholar
  173. Kaspari M, Yanoviak SP (2008) Biogeography of litter depth in tropical forest: evaluating the phosphorus growth rate hypothesis. Funct Ecol 22:919–923CrossRefGoogle Scholar
  174. Kaspari M, Yanoviak SP (2009) Biogeochemistry and the structure of tropical brown food webs. Ecology 90:3342–3351CrossRefGoogle Scholar
  175. Kay AD, Rostampour S, Sterner RW (2006) Ant stoichiometry: elemental homeostasis in stage-structures colonies. Funct Ecol 20:1037–1044CrossRefGoogle Scholar
  176. Kenesi G, Shalk HM, Kovacs AW, Herodek S, Présing M (2009) Effects of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia 623:191–202CrossRefGoogle Scholar
  177. Kerkhoff AJ, Enquist BJ (2006) Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecol Lett 9:419–427CrossRefGoogle Scholar
  178. Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Glob Ecol Biogeogr 14:585–598CrossRefGoogle Scholar
  179. Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168:E103–E122CrossRefGoogle Scholar
  180. Klassen M, Nolet BA (2008) Stoichiometry of endothermy: shifting the quest from nitrogen to carbon. Ecol Lett 11:785–792CrossRefGoogle Scholar
  181. Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174CrossRefGoogle Scholar
  182. Klausmeier CA, Litchman E, Daufresne T, Levin SA (2008) Phytoplankton stoichiometry. Ecol Res 23:479–485CrossRefGoogle Scholar
  183. Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–460CrossRefGoogle Scholar
  184. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450CrossRefGoogle Scholar
  185. Koeve W, Kähler P (2010) Heterotrophic denitrification vs. autotrophic anammox—quantifying collateral effects on the ocean carbon cycle. Biogeosciences 7:2327–2337CrossRefGoogle Scholar
  186. Körtzinger A, Koeve W, Kähler P, Mintrop L (2001) C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean. Deep Sea Res I 48:661–688CrossRefGoogle Scholar
  187. Ladanai S, Ågren GI, Olsson BA (2010) Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13:302–316CrossRefGoogle Scholar
  188. Lavrentyev PJ, Bootsma HA, Johengen TH, Cavaletto JF, Gardner WS (1998) Microbial plankton response to resource limitation: insights from the community structure and seston stoichiometry in Florida Bay, USA. Mar Ecol Prog Ser 165:45–57CrossRefGoogle Scholar
  189. Lawniczak AE, Güsewell S, Verhoeven JTA (2009) Effect of N:K supply ratios on the performance of three grass species from herbaceous wetlands. Basic Appl Ecol 10:715–725CrossRefGoogle Scholar
  190. Lenton TM, Klausmeier CA (2007) Biotic stoichiometric controls on the deep ocean N:P ratio. Biogeosciences 4:353–367CrossRefGoogle Scholar
  191. Lenton TM, Watson AI (2000) Redfoeld revisited: 1. Regulation of nitrate, phosphate and oxygen in the ocean. Glob Biogeochem Cycles 14:225–248CrossRefGoogle Scholar
  192. Leonardos N, Geider RJ (2004a) Effects of nitrate:phosphate supply ratio and irradiance on the C:N:P stoichiometry of Chaetoceros muelleri. Eur J Phycol 39:173–180CrossRefGoogle Scholar
  193. Leonardos N, Geider RJ (2004b) Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate:phosphate supply ratios and their influence on critical N:P. Limnol Oceanogr 49:2105–2114CrossRefGoogle Scholar
  194. Leu E, Falk-Petersen S, Hessen DO (2007) Ultraviolet radiation negatively affects growth but not food quality of arctic diatoms. Limnol Oceanogr 52:787–797CrossRefGoogle Scholar
  195. Li Y, Li D, Tang J, Wang Y, Liu Z, He S (2010) Long-term changes in the Changjiang estuary plankton community related to anthropogenic eutrophication. Aquat Ecosyst Health Manag 13:66–72CrossRefGoogle Scholar
  196. Liess A, Olsson J, Quevedo M, Eklov P, Vrede T, Hillebrand H (2006) Food web complexity affects stoichiometric and trophic interactions. Oikos 114:117–125CrossRefGoogle Scholar
  197. Liess A, Lange K, Schulz F, Piggott JJ, Matthaei CD, Townsend CR (2009) Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. J Ecol 97:326–336CrossRefGoogle Scholar
  198. Loladze I, Elser JJ (2011) The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol Lett 14:244–250CrossRefGoogle Scholar
  199. Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull Math Biol 62:1137–1162CrossRefGoogle Scholar
  200. Loneragan JF, Grove TS, Robson AD, Snowball K (1979) Phosphorus as a factor in zinc-phosphorus interactions in plants. Soil Sci Soc Am J 43:966–972CrossRefGoogle Scholar
  201. Loneragan JF, Grunes DL, Welch RM, Aduayi EA, Tengah A, Lazar VA, Cary EE (1981) Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci Soc Am J 46:345–352CrossRefGoogle Scholar
  202. Lovelock CE, Feller IC, Ball MC, Ellis J, Sorell B (2007) Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol Lett 10:1154–1163CrossRefGoogle Scholar
  203. Main TM, Dobberfhul DR, Elser JJ (1997) N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478CrossRefGoogle Scholar
  204. Mairapetyan SK, Tedavosyan AH, Alexanyan SS, Stepanyan BT (1999) Optimization of the N:P:K ratio in the nutrient medium of some soilless aromatic and medicinal plants. Acta Hortic 32:29–32Google Scholar
  205. Makarewicz JC, Bertram P, Lewis TW (1998) Changes in phytoplankton size-class abundance and species composition coinciding with changes in water chemistry and zooplankton community structure of Lake Michigan, 1983 to 1992. J Gt Lakes Res 24:637–657Google Scholar
  206. Makino W, Cotner JB (2004) Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: implications for growth- and resource-dependent variations. Aquat Microb Ecol 34:33–41CrossRefGoogle Scholar
  207. Makino W, Urabe J, Elser JJ, Yoshimizu C (2002) Evidence of phosphorus-limited individual and population growth of Daphnia in a Canadian Shield lake. Oikos 96:197–205CrossRefGoogle Scholar
  208. Makino W, Corner JB, Sterner RW, Elser JJ (2003) Are bacterial more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct Ecol 17:121–130CrossRefGoogle Scholar
  209. Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41:1355–1379CrossRefGoogle Scholar
  210. Manzoni S, Jackson RB, Troymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686CrossRefGoogle Scholar
  211. Margaris NS, Adamandiadou S, Siafaca L, Diamantopoulos J (1984) Nitrogen and phosphorus content in plant species of Mediterranean ecosystems in Greece. Vegetatio 55:29–35CrossRefGoogle Scholar
  212. Markow TA, Raphael B, Dobberfuhl D, Breitmeyer CM, Elser JJ, Pfeiler E (1999) Elemental stoichiometry of Drosophila and their host. Funct Ecol 13:78–84CrossRefGoogle Scholar
  213. Martinson HM, Schneider K, Gilbert J, Hines JE, Hambäck PA, Fagan WF (2008) Detritivory: stoichiometry of a neglected trophic level. Ecol Res 23:487–491CrossRefGoogle Scholar
  214. Matsumura M, Trafelet-Smith GM, Gratton C, Finke DL, Fagan WF, Denno RF (2004) Does intraguild predation enhance predator performance? A stoichiometric perspective. Ecology 85:2601–2615CrossRefGoogle Scholar
  215. Matzek V, Vitousek PM (2009) N:P stoichiometry and protein : RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol Lett 12:765–771CrossRefGoogle Scholar
  216. McGlynn TP, Salinas DJ, Dunn RR, Wood TE, Lawrence D, Clark DA (2007) Phosphorus limits tropical rain forest litter fauna. Biotropica 39:50–53CrossRefGoogle Scholar
  217. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401CrossRefGoogle Scholar
  218. McIntyre PB, Jones LE, Flecker AS, Vanni MJ (2007) Fish extinctions alter nutrient recycling in tropical freshwaters. Proc Natl Acad Sci USA 104:4461–4466CrossRefGoogle Scholar
  219. Mei ZP, Legendre JE, Tremblay Miller LA, Gratton C, Lovejoy P, Yager PL, Gosselin M (2005) Carbon to nitrogen (C:N) stoichiometry of the spring-summer phytoplankton bloom in the North Water Polynya (NOW). Deep Sea Res I 52:2301–2314CrossRefGoogle Scholar
  220. Méndez M, Karlsson PS (2005) Nutrient stoichiometry in Pinguicula vulgaris nutrient availability, plant size, and reproductive status. Ecology 86:982–991CrossRefGoogle Scholar
  221. Miller O, Straile D (2010) How cope with a superior enemy? Plant defence strategies in response to annual herbivore outbreaks. J Ecol 98:900–907CrossRefGoogle Scholar
  222. Mills MM, Arrigo KR (2010) Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton. Nat Geosci 3:412–416CrossRefGoogle Scholar
  223. Mitra A, Flynn KJ (2005) Predator-prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27:393–399CrossRefGoogle Scholar
  224. Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi KM, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112CrossRefGoogle Scholar
  225. Mulder C, Elser JJ (2009) Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Glob Change Biol. doi: 10.1111/j.1365-2486.2009.01899.x
  226. Mulder C, Den Hollander HA, Vonk JA, Rossberg AG, Jagers op Akkerhius GAJM, Yeates GW (2009) Soil resource supply influences faunal size-specific distributions in natural food webs. Naturwissenschaften 96:813–826CrossRefGoogle Scholar
  227. Neff JC, Reynolds R, Sanford RL, Fernández D, Lamothe P (2006) Controls of bedrock geochemistry on soil and plant nutrients in southern Utah. Ecosystems 9:879–893CrossRefGoogle Scholar
  228. Nelson WA, McCauley N, Wroma FJ (2001) Multiple dynamics in a single predator-prey system: experimental effects of food quality. Proc R Soc Lond 268:1223–1230CrossRefGoogle Scholar
  229. Ngai JT, Jefferies RL (2004) Nutrient limitation of plant growth and forage quality in arctic coastal marshes. J Ecol 92:1001–1010CrossRefGoogle Scholar
  230. Niinemets Ü, Kull K (2005) Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecol 24:209–219CrossRefGoogle Scholar
  231. Niklas KJ (1994) Size-dependent variations in plant growth rates and the 3/4 power rule. Am J Bot 81:134–144CrossRefGoogle Scholar
  232. Niklas KJ (2006) Plant allometry, leaf nitrogen and phosphorus stoichiometry and interspecific trends in animal growth rates. Ann Bot 97:155–163CrossRefGoogle Scholar
  233. Niklas NJ, Cobb ED (2005) N, P, and C stoichiometry of Eranthus hyemalis (Ranunculaceae) and the allometry of plant growth. Am J Bot 92:1256–1263CrossRefGoogle Scholar
  234. Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642CrossRefGoogle Scholar
  235. Nilsen P, Abrahamsen G (2003) Scots pine and Norway spruce stands responses to annual N, P and Mg fertilization. For Ecol Manag 174:221–232CrossRefGoogle Scholar
  236. Olde Venterink H, Güsewell S (2010) Competitive interactions between two meadows grasses under nitrogen and phosphorus limitation. Funct Ecol 24:877–886CrossRefGoogle Scholar
  237. Olde Venterink H, van der Vliet RE, Wassen MJ (2001) Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234:171–179CrossRefGoogle Scholar
  238. Olde Venterink H, Wassen MJ, Verkroost WM, de Ruiter PC (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84:2191–2199CrossRefGoogle Scholar
  239. Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149CrossRefGoogle Scholar
  240. Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423CrossRefGoogle Scholar
  241. Paoli GD (2006) Divergent leaf traits among congeneric tropical trees with contrasting habitat associations on Borneo. J Trop Ecol 22:397–408CrossRefGoogle Scholar
  242. Park S, Brett MT, Müller-Navarra DC, Goldman CR (2002) Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Freshw Biol 47:1377–1390CrossRefGoogle Scholar
  243. Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem functioning? Trends Ecol Evol 13:20–24CrossRefGoogle Scholar
  244. Peñuelas J, Sardans J (2009a) Elementary factors. Nature 460:803–804CrossRefGoogle Scholar
  245. Peñuelas J, Sardans J (2009b) Ecological metabolomics. Chem Ecol 25:305–309CrossRefGoogle Scholar
  246. Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008) Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol J Ecol 56:613–622Google Scholar
  247. Peñuelas J, Sardans J, Llusia J, Owen S, Carnicer J, Giambeluca TW, Rezende EL, Waite M, Niinemets Ü (2010) Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob Change Biol 16:2171–2185CrossRefGoogle Scholar
  248. Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C (2008) Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc Natl Acad Sci USA 12:1971–1978CrossRefGoogle Scholar
  249. Persson J, Vrede T, Holmgren S (2008) Responses in zooplankton populations to food quality and quantity changes after whole lake nutrient enrichment of an oligotrophic sub-alpine reservoir. Aquat Sci 70:142–155CrossRefGoogle Scholar
  250. Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751CrossRefGoogle Scholar
  251. Phoenix GK, Booth RE, Leake JR, Read DJ, Grime RJ, Lee JA (2004) Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatise activities of three plant functional types in a calcareous grassland. New Phytol 161:279–289CrossRefGoogle Scholar
  252. Pilati A, Vanni MJ (2007) Ontogeny, diet chifts, and nutrient stoichiometry in fish. Oikos 116:1661–1674CrossRefGoogle Scholar
  253. Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constrains and optimal foraging. Ecology 82:1260–1269CrossRefGoogle Scholar
  254. Powers JS, Tiffin P (2010) Plant functional type classifications in tropical dry forest in Costa Rica: leaf habit versus taxonomic approaches. Funct Ecol 24:927–936CrossRefGoogle Scholar
  255. Qin P, Mayer CM, Schulz KL, Ji X, Ritchie ME (2007) Ecological stoichiometry in benthic food webs: effect of light and nutrients on periphyton food quantity and quality in lakes. Limnol Oceanogr 52:1728–1734CrossRefGoogle Scholar
  256. Quan TM, Falkowski PG (2008) Redox control of N:P ratios in aquatic ecosystems. Geobiology 7:124–139CrossRefGoogle Scholar
  257. Ratnam J, Sankaran M, Hanan NP, Grant RC, Zambatis N (2008) Nutrient resorption pattern of plant functional groups in a tropical savanna: variation and functional significance. Oecologia 157:141–151CrossRefGoogle Scholar
  258. Raubenheimer D, Simpson SJ (2004) Organismal stoichiometry: quantifying non-independence among food components. Ecology 85:1203–1216CrossRefGoogle Scholar
  259. Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrient, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16CrossRefGoogle Scholar
  260. Redfield AC (1934) On the proportions of organic derivatives in seawater and relation to the composition of the plankton. In: Daniel RI (ed) James Johnstone memorial volume. Liverpool University Press, Liverpool, pp 176–192Google Scholar
  261. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, vol 2. Wiley, New York, pp 26–77Google Scholar
  262. Reef R, Ball MC, Feller IC, Lovelock CE (2010) Relationships among RNA:DNA ratio, growth and elemental stoichiometry in mangrove trees. Funct Ecol 24:1064–1072CrossRefGoogle Scholar
  263. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11106CrossRefGoogle Scholar
  264. Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin I, Elser JJ (2010) Consistent 2/3-power leaf nitrogen to phosphorus scaling among major plant groups and biomes. Proc R Soc Lond B Biol Sci 277:877–883CrossRefGoogle Scholar
  265. Richardson CJ, Ferrel GM, Vaithiyanathan P (1999) Nutrient effects on stand structure, resorption efficiency, and secondary compounds in everglades sawgrass. Ecology 80:2182–2192CrossRefGoogle Scholar
  266. Richardson SJ, Allen RB, Doherty JE (2008) Shifts in leaf N:P ratio during reabsorption reflect soil P in temperate forest. Funct Ecol 22:738–745CrossRefGoogle Scholar
  267. Robroek BJM, Adema EB, Venterink HO, Leonardson L, Wassen MJ (2009) How nitrogen and sulphur addition, and a single drought affect root phosphatase activity in Phalaris arundinacea. Sci Total Environ 407:2342–2348CrossRefGoogle Scholar
  268. Roem WJ, Berendse F (2000) Soil acidity and nutrient supply as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92:151–161CrossRefGoogle Scholar
  269. Rooney N, McCann K, Gellmer G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269CrossRefGoogle Scholar
  270. Rothlisberger JD, Baker MA, Frost PC (2008) Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. J North Am Benthol Soc 27:497–508CrossRefGoogle Scholar
  271. Ruiz-Fernández AC, Frignani M, Tesi T, Bojórquez-Leyva H, Bellucci LG, Páez-Osuna F (2007) Recent sedimentary history of organic matter and nutrient accumulation in the Ohuira Lagoon, northwestern Mexico. Arch Environ Contam Toxicol 53:159–167CrossRefGoogle Scholar
  272. Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265CrossRefGoogle Scholar
  273. Sadras VO (2006) The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crop Res 95:13–29CrossRefGoogle Scholar
  274. Saikia SK, Nandi S (2010) C and P in aquatic food chain: a review on C:P stoichiometry and PUFA regulation. Knowl Manag Aquat Ecosyst 398:03CrossRefGoogle Scholar
  275. Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone D, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic ocean. Nature 411:66–69CrossRefGoogle Scholar
  276. Sañudo-Wilhelmy SA, Tovar-Sánchez A, Fu FX, Capone DG, Carpenter EJ, Hutchins DA (2004) The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature 432:897–901CrossRefGoogle Scholar
  277. Sardans J, Peñuelas J (2007) Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21:191–201CrossRefGoogle Scholar
  278. Sardans J, Peñuelas J, Estiarte M, Prieto P (2008) Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Glob Change Biol 14:2304–2316CrossRefGoogle Scholar
  279. Sasaki T, Yoshihara Y, Jamsran U, Ohkuro T (2010) Ecological stoichiometry explains larger-scale facilitation processes by shrubs on species coexistence among understory plants. Ecol Eng 36:1070–1075CrossRefGoogle Scholar
  280. Saura-Mas S, Lloret F (2009) Linking post-fire regenerative strategy and leaf nutrient content in Mediterranean woody plants. Prespect Plant Ecol Evol Syst 11:219–229CrossRefGoogle Scholar
  281. Schade JD, Kyle M, Hobbie SE, Fagan WF, Elser JJ (2003) Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol Lett 6:96–101CrossRefGoogle Scholar
  282. Schatz GS, McCauley E (2007) Foraging behavior by Daphnia in stoichiometric gradients of food quality. Oecologia 153:1021–1030CrossRefGoogle Scholar
  283. Schindler DE, Eby LA (1997) Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78:1816–1831CrossRefGoogle Scholar
  284. Schneider K, Kay AD, Fagan WF (2010) Adaptation to a limiting environment: the phosphorus content of a terrestrial cave arthropods. Ecol Res 25:565–577CrossRefGoogle Scholar
  285. Schoo KL, Aberle N, Malzahn AM, Boersma M (2010) Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus? Aquat Ecol 44:233–242CrossRefGoogle Scholar
  286. Seidendorf B, Meier N, Petrusek A, Boeresma M, Streit B, Schwenk K (2010) Sensitivity of Daphnia species to phosphorus-deficient diets. Oecologia 162:349–357CrossRefGoogle Scholar
  287. Seastedt TR, Vaccaro L (2001) Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, USA. Arct Antarct Alpine Res 33:100–106CrossRefGoogle Scholar
  288. Shaver GR, Melillo JM (1984) Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65:1491–1510CrossRefGoogle Scholar
  289. Shimizu Y, Urabe J (2008) Regulation of phosphorus stoichiometry and growth rate of consumers: theoretical and experimental analyses with Daphnia. Oecologia 155:21–31CrossRefGoogle Scholar
  290. Singer GA, Battin TJ (2007) Anthropogenic subsides alter stream consumer-resource stoichiometry, biodiversity, and food chains. Ecol Appl 17:376–389CrossRefGoogle Scholar
  291. Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798CrossRefGoogle Scholar
  292. Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86CrossRefGoogle Scholar
  293. Small GE, Pringle CM (2010) Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a Neotropical stream. Oecologia 162:581–590CrossRefGoogle Scholar
  294. Smith VH (1983) Low nitrogen to phosphorus ratios favour dominance by blue-green algae in Lake Phytoplankton. Science 221:669–671CrossRefGoogle Scholar
  295. Smith VH (1992) Effects of nitrogen:phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems. Biogeochemistry 18:19–35CrossRefGoogle Scholar
  296. Spears BM, Carvalho L, Perkins R, Paterson DM (2008) Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake. Water Res 42:977–985CrossRefGoogle Scholar
  297. Stelzer RS, Lamberti GA (2002) Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology 83:1039–1051CrossRefGoogle Scholar
  298. Sterner RW (1995) Elemental stoichiometry of species in ecosystems. In: Linking species and ecosystems. pp 240–252Google Scholar
  299. Sterner RW (2011) C:N:P stoichiometry in Lake Superior: freshwater sea as end member. Inland Waters (in press)Google Scholar
  300. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  301. Sterner RW, George N (2000) Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81:127–140CrossRefGoogle Scholar
  302. Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Evol Syst 25:1–29CrossRefGoogle Scholar
  303. Sterner RW, Elser JJ, Hessen DO (1992) Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic consumers. Biogeochemistry 17:49–67CrossRefGoogle Scholar
  304. Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH (1997) The light/nutrient ratio in lakes. The balance of energy and materials affect ecosystem structure and process. Am Nat 150:663–684CrossRefGoogle Scholar
  305. Sterner RW, Classen J, Lampert W, Weisse T (1998) Carbon:phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150CrossRefGoogle Scholar
  306. Sterner RW, Anagnostou E, Brovold S, Bullerjahn GS, Finlay JC, Kumar S, McKay RML, Sherrell RM (2007) Increasing stoichiometric imbalance in North America’s largest lake: nitrification in Lake Superior. Geophys Res Lett 34:L10406CrossRefGoogle Scholar
  307. Sterner RW, Andersen T, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J (2008) Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwater. Limnol Oceanogr 5:1169–1180CrossRefGoogle Scholar
  308. Striebel M, Behl S, Stibor H (2009) The coupling of biodiversity and productivity in phytoplankton communities: consequences for biomass stoichiometry. Ecology 90:2025–2031CrossRefGoogle Scholar
  309. Strojsova M, Nedoma J, Sed’a J, Vrba J (2008) Diet quality impact on growth, reproduction and digestive activity in Brachionus calyciflorus. J Plankton Res 39:1123–1131CrossRefGoogle Scholar
  310. Tanner DK, Brazner JC, Brady VJ (2000) Factors influencing carbon, nitrogen, and phosphorus content of fish from a Lake Superior coastal wetland. Can J Fish Aquat Sci 57:1243–1251CrossRefGoogle Scholar
  311. Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissues as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534CrossRefGoogle Scholar
  312. Teubner K, Crosbie ND, Donabaum K, Kabas W, Kirschner AKT, Pfister G, Salbrechter M, Dokulil MT (2003) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48:1141–1149CrossRefGoogle Scholar
  313. Tibbets TM, Molles MC Jr (2005) C:N:P stoichiometry of dominant riparian trees and arthropods along the Middle Rio Grande. Freshw Biol 50:1882–1894CrossRefGoogle Scholar
  314. Timmermans KR, van der Wagt B (2010) Variability in cell size, nutrient depletion, and growth rates of the southern ocean diatom Fragilariopsis kerguelensis (Bacillariophyceae) after prolonged iron limitation. J Phycol 46:497–506CrossRefGoogle Scholar
  315. Torres LE, Vanni MJ (2007) Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos 116:259–270CrossRefGoogle Scholar
  316. Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N:P ratios in tropical rainforest. Ecology 88:107–118CrossRefGoogle Scholar
  317. Townsend SA, Schult JH, Douclas MM, Skinner S (2008) Does the Redfield ratio infer nutrient limitation in the macroalgae Spirogyra fluviatilis? Freshw Biol 53:509–520CrossRefGoogle Scholar
  318. Tripathi SK, Kushwara CP, Singh KP (2008) Tropical forest and savanna ecosystems show differential impact of N and P additions on soil organic matter and aggregate structure. Glob Change Biol 14:2572–2581Google Scholar
  319. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531CrossRefGoogle Scholar
  320. Urabe J (1995) Direct and indirect effects of zooplankton on seston stoichiometry. Ecoscience 2:286–296Google Scholar
  321. Urabe J, Sterner RW (1996) Regulation of herbivore growth by the balance of light and nutrients. Proc Natl Acad Sci USA 93:8465–8469CrossRefGoogle Scholar
  322. Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth: is it real? Limnol Oceanogr 42:1436–1443CrossRefGoogle Scholar
  323. Urabe J, Elser JJ, Kyle M, Yoshida T, Sekino T, Kawabata Z (2002a) Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient cycling. Ecol Lett 5:177–185CrossRefGoogle Scholar
  324. Urabe J, Kyle M, Makino W, Yoshida T, Andersen T, Elser JJ (2002b) Reduced light increases herbivore production due to stoichiometry effects of light/nutrient balance. Ecology 83:619–627CrossRefGoogle Scholar
  325. Van de Weg M, Meir P, Grace J, Atkin OK (2009) Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecol Divers 2:243–254CrossRefGoogle Scholar
  326. Van der Stap I, Vos M, Verschoor AM, Helmsing NR, Mooij WM (2007) Induced defenses in herbivores and plants differentially modulate a trophic cascade. Ecology 88:2474–2481CrossRefGoogle Scholar
  327. Van Duren IC, Pegtel DM (2000) Nutrient limitations in wet, drained and rewetted fen meadows: evaluation of methods and results. Plant Soil 220:35–47CrossRefGoogle Scholar
  328. Van Geest GJ, Spierenburg P, Van Donk E, Hessen DO (2007) Daphnia growth rates in Arctic ponds: limitation by nutrients or carbon? Polar Biol 30:235–242Google Scholar
  329. Vanni MJ, Layne CD, Arnott SE (1997) “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78:1–20Google Scholar
  330. Vanni MJ, Flecker AS, Hood JM, Headwood JL (2002) Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem process. Ecol Lett 5:285–293CrossRefGoogle Scholar
  331. Ventura M, Catalan J (2005) Reproduction as one of the main causes of temporal variability in the elemental composition of zooplankton. Limnol Oceanogr 50:2043–2056CrossRefGoogle Scholar
  332. Verhoeven JTA, Koerselman W, Meuleman AFM (1998) Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trees 11:494–497Google Scholar
  333. Villar-Argaiz M, Medina-Sánchez JM, Carrillo P (2002) Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83:1899–1914CrossRefGoogle Scholar
  334. Visanuvimol L, Bertram SM (2010) Dietary phosphorus availability influences female cricket lifetime reproductive effort. Ecol Entomol 35:386–395CrossRefGoogle Scholar
  335. Viso AC, Marty GC (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533CrossRefGoogle Scholar
  336. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  337. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications and nitrogen-phosphorus interactions. Ecol Appl 20:5–15CrossRefGoogle Scholar
  338. Vrede T, Andersen T, Hessen DO (1999) Phosphorus distribution in three crustacean zooplankton species. Limnol Oceanogr 44:225–229CrossRefGoogle Scholar
  339. Vrede T, Dobberfuhl DR, Kooijman S, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229CrossRefGoogle Scholar
  340. Vrede T, Ballantyne A, Mille-Lindblom C, Algesten G, Gudasz C, Lindahl S, Brunberg AK (2009) Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshw Biol 54:331–344CrossRefGoogle Scholar
  341. Wakefield AE, Gotelli NJ, Witman SE, Ellison AM (2005) Prey addition alters nutrient stoichiometry of the carnivorous plant. Ecology 86:1737–1743CrossRefGoogle Scholar
  342. Wall LG, Hellsten A, Huss-Danell K (2000) Nitrogen, phosphorus, and the ratio between them affect nodulation in Alnus incana and Trifolium pretense. Symbiosis 29:91–105Google Scholar
  343. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19CrossRefGoogle Scholar
  344. Ward BB, Devol AH, Rich JJ, Chang BX, Bulow SE, Naik H, Pratihary A, Jayakumar A (2009) Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461:78–81CrossRefGoogle Scholar
  345. Watts T, Woods A, Hargand S, Elser JJ, Markov TA (2006) Biological stoichiometry of growth in Drosophila melanogaster. J Insect Physiol 52:187–193CrossRefGoogle Scholar
  346. Weber TS, Deutsch C (2010) Ocean nutrient ratios governed by plankton biogeography. Nature 467:550–554CrossRefGoogle Scholar
  347. Weider LJ, Glenn KL, Kyle M, Elser JJ (2004) Associations among ribosomal rDNA intergenic spacer length, growth rate and C:N:P stoichiometry in the genus Daphnia. Limnol Oceanogr 49:1417–1423CrossRefGoogle Scholar
  348. Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB, Markow TA (2005) The functional significance of ribosomal rDNA variation: impacts on evolutionary ecology of organisms. Annu Rev Ecol Evol Syst 36:219–242CrossRefGoogle Scholar
  349. Weider LJ, Jeyasingh PD, Looper KG (2008) Stoichiometry differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex. Oecologia 158:47–55CrossRefGoogle Scholar
  350. Willby NJ, Pulford ID, Flowers TH (2001) Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability. New Phytol 152:463–481CrossRefGoogle Scholar
  351. Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003) Temperature and the chemical composition of poikilothermic organisms. Funct Ecol 17:237–245CrossRefGoogle Scholar
  352. Woods HA, Fagan WF, Elser JJ, Harrison JH (2004) Allometric and phylogenetic variation in insect phosphorus content. Funct Ecol 18:103–109CrossRefGoogle Scholar
  353. Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19CrossRefGoogle Scholar
  354. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827CrossRefGoogle Scholar
  355. Wright IJ, Reich PB, Cornelissen HC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DJ, Westoby M (2005) Assessing the generality of global leaf traits relationships. New Phytol 166:485–496CrossRefGoogle Scholar
  356. Wu J, Sunda W, Boyle EA, Karl DM (2000) Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762CrossRefGoogle Scholar
  357. Yin K, Harrison PJ (2007) Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters. Mar Pollut Bull 54:646–656CrossRefGoogle Scholar
  358. Yuan ZY, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542CrossRefGoogle Scholar
  359. Zhang G, Han X (2010) N:P stoichiometry in Ficus racemosa and its mutualistic pollinator. J Plant Ecol 3:123–130CrossRefGoogle Scholar
  360. Zheng S, Shangguan Z (2007) Soil patterns of leaf nutrient traits of the plants in the loess plateau of China. Trees 21:357–370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jordi Sardans
    • 1
  • Albert Rivas-Ubach
    • 1
  • Josep Peñuelas
    • 1
  1. 1.Global Ecology Unit CSIC-CEAB-CREAF, CREAF, Edifici C, Universitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations