Skip to main content

Advertisement

Log in

Changes in organic phosphorus composition in boreal forest humus soils: the role of iron and aluminium

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Organic phosphorus (P) is an important component of boreal forest humus soils, and its concentration has been found to be closely related to the concentration of iron (Fe) and aluminium (Al). We used solution and solid state 31P NMR spectroscopy on humus soils to characterize organic P along two groundwater recharge and discharge gradients in Fennoscandian boreal forest, which are also P sorption gradients due to differences in aluminium (Al) and iron (Fe) concentration in the humus. The composition of organic P changed sharply along the gradients. Phosphate diesters and their degradation products, as well as polyphosphates, were proportionally more abundant in low Al and Fe sites, whereas phosphate monoesters such as myo-, scyllo- and unknown inositol phosphates dominated in high Al and Fe soils. The concentration of inositol phosphates, but not that of diesters, was positively related to Al and Fe concentration in the humus soil. Overall, in high Al and Fe sites the composition of organic P seemed to be closely associated with stabilization processes, whereas in low Al and Fe sites it more closely reflected inputs of organic P, given the dominance of diesters which are generally assumed to constitute the bulk of organic P inputs to the soil. These gradients encompass the broad variation in soil properties detected in the wider Fennoscandian boreal forest landscape, as such our findings provide insight into the factors controlling P biogeochemistry in the region but should be of relevance to boreal forests elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akselsson C, Westling O, Alveteg M, Thelin G, Fransson AM, Hellsten S (2008) The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils. Sci Total Environ 404:284–289. doi:10.1016/j.scitotenv.2007.11.017

    Article  Google Scholar 

  • Baer E, Kates M (1950) Migration during hydrolysis of esters of glycerophosphoric acid. 2. The acid and alkaline hydrolysis of l-Alpha-Lecithins. J Biol Chem 185:615–623

    Google Scholar 

  • Bedrock CN, Cheshire MV, Chudek JA, Goodman BA, Shand CA (1994) Use of 31 P-NMR to study the forms of phosphorus in peat soils. Sci Total Environ 152:1–8

    Article  Google Scholar 

  • Bieleski RI (1973) Phosphate pools, phosphate transport and phosphate availability. Ann Rev Plant Physiol 24:225–252

    Article  Google Scholar 

  • Bünemann EK, Smernik RJ, Doolette AL, Marschner P, Stonor R, Wakelin SA, McNeill AM (2008) Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biol Biochem 41:1908–1915. doi:10.1016/j.soilbio.2008.03.017

    Article  Google Scholar 

  • Cade-Menun BJ, Preston CM (1996) A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci 161:770–785

    Article  Google Scholar 

  • Celi L, Barberis E (2005) Abiotic stabilization of organic phosphorus in the environment. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 113–132

    Chapter  Google Scholar 

  • Condron LM, Turner BL, Cade-Menun J (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. American Society of Agronomy, Madison, WI, pp 87–121

    Google Scholar 

  • Cross AF, Schlesinger WF (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214. doi:10.1016/0016-7061(94)00023-4

    Article  Google Scholar 

  • Dahl E, Gjems O, Kjelland-Lund JJ (1967) On the vegetation of Norwegian conifer forest in relation to the chemical properties of the humus layer. Meddelende i Norske Skogsforsøksvesen 85:501–531

    Google Scholar 

  • De Groot CJ, Golterman HL (1993) On the presence of organic phosphate in some Camargue sediments—evidence for the importance of phytate. Hydrobiologia 252:117–126

    Article  Google Scholar 

  • Dell’Olio LA, Maguire RO, Osmond DL (2008) Influence of Mehlich-3 extractable aluminum on phosphorus retention in organic soils. Soil Sci 173:119–129. doi:10.1097/ss.0b013e31815d8eb7

    Article  Google Scholar 

  • Doolette AL, Smernik RJ, Dougherty WJ (2009) Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds. Soil Sci Soc Am J 73:919–927. doi:10.2136/sssaj2008.0192

    Article  Google Scholar 

  • Doolette AL, Smernik RJ, Dougherty WJ (2010) Rapid decomposition of phytate applied to a calcareous soil demonstrated by a solution 31P NMR study. Eur J Soil Sci. doi:10.1111/j.1365-2389.2010.01259.x

  • FAO (2001) Production yearbook 1999. Food and Agricultural Organization of the United Nations, vol 53, Statistical series no. 156. FAO, Rome

  • Gianfrancesco RU, Leake JR (2002) Utilisation of phosphodiester-P by ectomycorrhizal fungi: use of DNA as a source of phosphorus and preliminary characterisation of phosphatases in Amanita rubescens and Suillus bovinus. In: Whitton BA, Hernandez I (eds) Phosphatases in the environment. Kluwer Academic, Dordrecht

    Google Scholar 

  • Giesler R, Högberg M, Högberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79:119–137

    Article  Google Scholar 

  • Giesler R, Petersson T, Högberg P (2002) Phosphorus limitation in boreal forests: effects of aluminum and iron accumulation in the humus layer. Ecosystems 5:300–314. doi:10.1007/s10021-001-0073-5

    Article  Google Scholar 

  • Giesler R, Satoh F, Ilstedt U, Nordgren A (2004) Microbially available phosphorus in boreal forests: effects of aluminum and iron accumulation in the humus layer. Ecosystems 7:208–217. doi:10.1007/s10021-003-0223-z

    Article  Google Scholar 

  • Giesler R, Andersson T, Lovgren L, Persson P (2005) Phosphate sorption in aluminum- and iron-rich humus soils. Soil Sci Soc Am J 69:77–86

    Google Scholar 

  • Gorham E (1953) The development of the humus layer in some woodlands of the English Lake District. J Ecol 41:123–152

    Article  Google Scholar 

  • Hill J, Richardson AE (2007) Isolation and assessment of organisms that utilize phytate. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates. Linking agriculture and the environment. CAB International, Wallingford, Oxfordshire, pp 61–77

    Chapter  Google Scholar 

  • Högberg P (2001) Interactions between hillslope hydrochemistry, nitrogen dynamics, and plants in Fennoscandian boreal forest. In: Schulze ED, Heimann M, Harrison S (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, CA, pp 237–256

    Google Scholar 

  • Högberg MN, Bååth E, Nordgren A, Arnebrant K, Högberg P (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forest. New Phytol 160:225–238. doi:10.1046/j.1469-8137.2003.00867.x

    Article  Google Scholar 

  • Hupfer M, Rübe B, Schmieder P (2004) Origin and diagenesis of polyphosphate in lake sediments: a 31P-NMR study. Limnol Oceanogr 49:1–10

    Article  Google Scholar 

  • Karlsson T, Persson P, Skyllberg U, Mörth CM, Giesler R (2008) Characterization of Iron(III) in organic soils using extended X-ray absorption fine structure spectroscopy. Environ Sci Technol 42:5449–5454. doi:10.1021/es800322j

    Article  Google Scholar 

  • Lahti T, Vaisanen RA (1987) Ecological gradients of boreal forests in south Finland: an ordination test of Cajander’s forest type theory. Vegetation 68:145–156

    Article  Google Scholar 

  • Leake JR (2002) Organic phosphorus utilisation by mycorrhizal plants and fungi: how much do we really know? In: Whitton BA, Hernandez I (eds) Phosphatases in the environment. Kluwer Academic, Dordrecht

    Google Scholar 

  • Lookman R, Grobet P, Merckx R, Van Riemsdijk WH (1997) Application of 31P and 27Al MAS NMR for phosphate speciation studies in soil and aluminium hydroxides: promises and constraints. Geoderma 80:369–388

    Article  Google Scholar 

  • Lung SC, Lim BL (2006) Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate. Plant Soil 279:187–199. doi:10.1007/s11104-005-1009-1

    Article  Google Scholar 

  • Magid J, Tiessen H, Condron LM (1996) Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 429–466

    Chapter  Google Scholar 

  • Makarov MI, Malysheva TI, Haumaier L, Alt HG, Zech W (1997) The forms of phosphorus in humic and fulvic acids of a toposequence of alpine soils in the northern Caucasus. Geoderma 80:61–73

    Article  Google Scholar 

  • Makarov MI, Haumaier L, Zech W (2002) Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biol Biochem 34:1467–1477

    Article  Google Scholar 

  • Makarov MI, Haumaier L, Zech W, Marfenina OE, Lysak LV (2005) Can P-31 NMR spectroscopy be used to indicate the origins of soil organic phosphates? Soil Biol Biochem 37:15–25. doi:10.1016/j.soilbio.2004.07.022

    Article  Google Scholar 

  • Månsson K (2005) Plant-bacterial and plant-fungal competition for nitrogen and phosphorus. Dissertation, Lund University

  • Mulder J, Pijpers M, Christophersen N (1991) Water flow-paths and the spatial distribution of soils and exchangeable cations in an acid-rain impacted and a pristine catchment in Norway. Water Resour Res 27:2919–2928

    Article  Google Scholar 

  • Nilsson LO, Giesler R, Bååth E, Wallander H (2005) Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622. doi:10.1111/j.1469-8137.2004.01223.x

    Article  Google Scholar 

  • Nordin A, Högberg P, Nasholm T (2001) Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–132. doi:10.1007/s004420100698

    Article  Google Scholar 

  • Norrström AC (1993) Retention and chemistry of aluminium in groundwater discharge areas. Environ Pollut 81:269–275

    Article  Google Scholar 

  • Norrström AC (1995) Concentration and chemical species of iron in soils from groundwater/surface water ecotones. Hydrol Sci 40(3):319–329

    Article  Google Scholar 

  • Ognalaga M, Frossard E, Thomas F (1994) Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite. Soil Sci Soc Am J 58:332–337

    Article  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Sa NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787. doi:10.1016/j.soilbio.2008.01.012

    Article  Google Scholar 

  • Pettersson E (1994) Predictive functions for impact of nitrogen fertilization on growth over five years. Forest Research Institute of Sweden, Report no. 3, pp 1–56

  • Raboy V (2003) Myo-inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64:1033–1043. doi:10.1016/s0031-9422(03)00446-1

    Article  Google Scholar 

  • Shand CA, Cheshire MV, Bedrock CN, Chapman PJ, Fraser AR, Chudek JA (1999) Solid-phase P-31 NMR spectra of peat and mineral soils, humic acids and soil solution components: influence of iron and manganese. Plant Soil 214:153–163

    Article  Google Scholar 

  • Soil Survey Staff (1992) Keys to soil taxonomy. SMSS Technical Monograph, vol 19, Blacksburg (VA)

  • Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451

    Article  Google Scholar 

  • Tate KR, Newman RH (1982) Phosphorus fractions of a climosequence of soils in New Zealand tussock grassland. Soil Biol Biochem 14:191–196

    Article  Google Scholar 

  • Thelin G (2006) Askåterföring till gran - och bokbestånd - effekter på näring, tillväxt kvävedynamik och kolbalans. Värmeforsk, Stockholm

    Google Scholar 

  • Turner BL (2007) Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates. Linking agriculture and the environment. CAB International, Wallingford, pp 186–206

    Chapter  Google Scholar 

  • Turner BL (2008) Soil organic phosphorus in tropical forests: an assessment of the NaOH-EDTA extraction procedure for quantitative analysis by solution P-31 NMR spectroscopy. Eur J Soil Sci 59:453–466. doi:10.1111/j.1365-2389.2007.00994.x

    Article  Google Scholar 

  • Turner BL, Richardson AE (2004) Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci Soc Am J 68:802–808

    Article  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond Ser B 357:449–469

    Article  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003a) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci Soc Am J 67:497–510

    Article  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003b) Quantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution P-31 NMR spectroscopy and spectral deconvolution. Soil Sci 168(7):469–478. doi:10.1097/01.ss.0000080332.10341.ed

    Google Scholar 

  • Turner BL, Baxter R, Mahieu N, Sjögersten S, Whitton BA (2004) Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)—tundra ecotone. Soil Biol Biochem 36:815–823. doi:10.1016/j.soilbio.2004.01.011

    Article  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306. doi:10.1016/j.talanta.2004.11.012

    Article  Google Scholar 

  • Turner BL, Condron LM, Richardson SJ, Peltzer DA, Allison VJ (2007) Soil organic phosphorus transformations during pedogenesis. Ecosystems 10:1166–1181. doi:10.1007/s10021-007-9086-z

    Article  Google Scholar 

  • Vincent AG, Turner BL, Tanner EVJ (2010) Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur J Soil Sci 61:48–57. doi:10.1111/j.1365-2389.2009.01200.x

    Article  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513. doi:10.1126/science.1098778

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tobias Sparrman for assistance with the deconvolution procedure, as well as to Maja K Sundqvist and two anonymous reviewers for helpful comments on this manuscript. Funding was provided by the Kempe Foundation (AGV), the Swedish Research Council VR (JS, GG, RG, PP, MJ), the Swedish Research Council FORMAS (JS) and the Centre for Environmental Research in Umeå (CMF) (JV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea G. Vincent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, A.G., Schleucher, J., Gröbner, G. et al. Changes in organic phosphorus composition in boreal forest humus soils: the role of iron and aluminium. Biogeochemistry 108, 485–499 (2012). https://doi.org/10.1007/s10533-011-9612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9612-0

Keywords

Navigation