Skip to main content
Log in

Emerging understanding of the ecosystem silica filter

  • Synthesis and Emerging Ideas
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The annual fixation of dissolved Si (DSi) into terrestrial vegetation has been estimated to range from 60 to 200 Tmole, or 10–40 times more than the yearly export of DSi and biogenic Si (BSi) from the terrestrial geobiosphere to the coastal zone. Ecosystems form a large filter between primary mobilization of DSi from silicate weathering and its eventual export to the oceans, and a large reservoir of BSi accumulates in aquatic and terrestrial ecosystems. Although a number of synthesis activities within the last decade have discussed biological transformations in the terrestrial Si cycle, the timescales at which BSi is stored and recycled within ecosystems, BSi persistence and reactivity throughout soil profiles, the dependence of the BSi storage and recycling on ecological processes, the feedbacks to hydrology, the interaction with man’s activities and ultimately the global relevance in Si budgets are poorly constrained. Here we discuss 5 key controls on the ability of ecosystems to filter and control the export of DSi: ecosystem biodiversity, BSi dissolution rates and reactivity, hydrology, interaction with the geosphere and anthropogenic impacts. These controls need to be further studied to better quantify the global and local importance of the terrestrial biogeochemical Si cycle and specifically the BSi reservoir in ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    Article  Google Scholar 

  • Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142:29–35

    Article  Google Scholar 

  • Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecol Bull 35:469–476

    Google Scholar 

  • Beusen AHW, Bouwman AF, Durr HH, Dekkers ALM, Hartmann J (2009) Global patterns of dissolved silica export to the coastal zone: results from a spatially explicit global model. Global Biogeochem Cycles 23:GB0A02. doi:10.1029/2008GB00328

    Article  Google Scholar 

  • Bidle KD, Brzezinski MA, Long RA, Jones JL, Azam F (2003) Diminished efficiency in the oceanic silica pump caused by bacteria-mediated silica dissolution. Limnol Oceanogr 48:1855–1868

    Article  Google Scholar 

  • Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochem Cycles 20:GB3023

    Article  Google Scholar 

  • Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, Benning LG (2009) Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615–618

    Article  Google Scholar 

  • Cary L, Alexandre A, Meunier J-D, Boeglin J-L, Braun J-J (2005) Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry 74:101–114

    Article  Google Scholar 

  • Clarke J (2003) The occurence and significance of biogenic opal in the regolith. Earth Sci Rev 60:175–194

    Article  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Article  Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16:1121. doi:10.1029/2002GB001894

    Article  Google Scholar 

  • Conley DJ, Schelske CL, Stoermer EF (1993) Modification of silica biogeochemistry with eutrophication in aquatic systems. Mar Ecol Prog Ser 101:179–192

    Article  Google Scholar 

  • Conley DJ, Sommer M, Meunier J-D, Kaczorek D, Saccone L (2006) Silicon in the terrestrial biogeosphere. In: Ittekot V, Unger D, Humborg C, An NT (eds) The silicon cycle: human perturbations, impacts on aquatic Systems. Island Press, Washington, pp 13–28

    Google Scholar 

  • Conley DJ, Likens GE, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Glob Change Biol 14:2548–2554

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60:609

    Google Scholar 

  • Cornelis J-T, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2010) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosci Discuss 7:5873–5930

    Article  Google Scholar 

  • Demaster DJ (1981) The supply and accumulation of silica in the marine-environment. Geochim Cosmochim Acta 45:1715–1732

    Article  Google Scholar 

  • Denman KL (2003) Modelling planktonic ecosystems: parameterizing complexity. Prog Oceeanogr 57:429–452

    Article  Google Scholar 

  • Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731

    Article  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  Google Scholar 

  • Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79

    Article  Google Scholar 

  • Fisher SG, Grimm NB, Marti E, Holmes RM, Jones JB (1998) Material spiralling in stream corridors: a telescoping ecosystem model. Ecosystems 1:19–34

    Article  Google Scholar 

  • Fulweiler RW, Nixon S (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river. Biogeochemistry 74:115–130

    Article  Google Scholar 

  • Gao QZ, Tao Z, Huang XK, Na L, Yu KF, Wang ZG (2009) Chemical weathering and CO2 consumption in the Xijiang River basin, South China. Geomorphology 106:324–332

    Article  Google Scholar 

  • Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758

    Article  Google Scholar 

  • Henriet C, De Jaeger N, Dorel M, Opfergelt S, Delvaux B (2008) The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils. Biogeochemistry 90:209–223

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    Article  Google Scholar 

  • Hornberger GM, Scanlon TM, Raffensperger JP (2001) Modelling transport of dissolved silica in a forested headwater catchment: the effect of hydrological and chemical time scales on hysteresis in the concentration-discharge relationship. Hydrol Process 15:2029–2038

    Article  Google Scholar 

  • Humborg C, Ittekkot V, Cociasu A, Von Bodungen B (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386:385–388

    Article  Google Scholar 

  • Jonasson S, Chapin FS (1991) Seasonal uptake and allocation of phosphorus in Eriophorum vaginatum L. measured by labelling with P-32. New Phytol 118:349–357

    Article  Google Scholar 

  • Kokfelt U, Struyf E, Randsalu U (2009) Diatoms in peat—dominant producers in a changing environment? Soil Biol Biochem 41:1764–1766

    Article  Google Scholar 

  • Kokfelt U, Struyf E, Reuss N, Sonesson M, Rundgren M, Skog G, Rosén P, Hammarlund D (2010) Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden. J Paleolimnol 44:327–342

    Article  Google Scholar 

  • Konhauser KO, Urrutia MM (1999) Bacterial clay authigenesis: a common biogeochemical process. Chem Geol 161:399–413

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  Google Scholar 

  • Laruelle GG, Roubeix V, Sferratore A, Brodhern B, Ciuffa D, Conley DJ, Duerr H, Garnier J, Lancelot C, Phong QLT, Meybeck M, Michalopoulos P, Moriceau B, Ni Longphuirt S, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier PAG, Saccone L, Slomp CP, Spiteri C, Van Cappellen P (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Global Biogeochem Cycles 23:GB4031. doi:10.1029/2008GB003267

    Article  Google Scholar 

  • Lee SY, Gilkes RJ (2005) Groundwater geochemistry and composition of hardpans in southwestern Australian regolith. Geoderma 126:59–84

    Article  Google Scholar 

  • Loucaides S, Cahoon LB, Henry EJ (2007) Effects of watershed impervious cover on dissolved silica loading in storm flow. J Am Water Resour Assoc 43:841–849

    Article  Google Scholar 

  • Loucaides S, Van Cappellen P, Behrends T (2008) Dissolution of biogenic silica from land to ocean: role of salinity and pH. Limnol Oceanogr 53:1614–1621

    Article  Google Scholar 

  • Loucaides S, Behrends T, Van Cappellen P (2010) Reactivity of biogenic silica: surface versus bulk charge density. Geochim Cosmochim Acta 74:517–530

    Article  Google Scholar 

  • Markewitz D, Richter DD (1998) The bio in aluminum and silicon geochemistry. Biogeochemistry 42:235–252

    Article  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2007) Grasses and the resource availability hypothesis: the importance of silica-based defences. J Ecol 95:414–424

    Article  Google Scholar 

  • Massey FP, Smith MJ, Lambin X, Hartley SE (2008) Are silica defences in grasses driving vole population cycles? Biol Lett 4:419–422

    Article  Google Scholar 

  • McLaren JR, Turkington R (2010) Ecosystem properties determined by plant functional group identity. J Ecol 98:459–469

    Article  Google Scholar 

  • McNaughton SJ, Tarrants JL (1983) Grass leaf silicification: natural selection for an inducible defense against herbivores. Proc Natl Acad Sci USA 80:790–791

    Article  Google Scholar 

  • Moriceau B, Garvey M, Ragueneau O, Passow U (2007) Evidence for reduced biogenic silica dissolution rates in diatom aggregates. Mar Ecol Prog Ser 333:129–142

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Noh H, Huh Y, Qin JH, Ellis A (2009) Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim Cosmochim Acta 73:1857–1877

    Article  Google Scholar 

  • Opfergelt S, Delvaux B, Andre L, Cardinal D (2008) Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry 91:163–175

    Article  Google Scholar 

  • Rabosky DL, Sorhannus U (2009) Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457:183–186

    Article  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  Google Scholar 

  • Rickert D, Schlüter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim Cosmochim Acta 66:439–455

    Article  Google Scholar 

  • Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    Article  Google Scholar 

  • Saccone L, Conley DJ, Likens GE, Bailey SW, Buso DC, Johnson CE (2008) Distribution of amorphous silica in soils of the Hubbard Brook Experimental Forest. Soil Sci Soc Am J 72:1637–1644

    Article  Google Scholar 

  • Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Article  Google Scholar 

  • Scanlon TM, Raffensperger JP, Hornberger GM (2001) Modeling transport of dissolved silica in a forested headwater catchment: implications for defining the hydrochemical response of observed flow pathways. Water Resour Res 37:1071–1082

    Article  Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186:385–391

    Article  Google Scholar 

  • Schoelynck J, Bal K, Struyf E, Meire P (submitted) A long-armed non-essential element: far-reaching effects of plant silicon uptake. J Veg Sci

  • Smedberg E, Morth CM, Swaney DP, Humborg C (2006) Modeling hydrology and silicon–carbon interactions in taiga and tundra biomes from a landscape perspective: implications for global warming feedbacks. Global Biogeochem Cycles 20:GB2014

    Article  Google Scholar 

  • Smis A, Van Damme S, Struyf E, Govers G, Van Wesemael B, Clymans W, Frot E, Vandevenne F, Van Hoestenberghe T, Meire P (in press) A trade-off between dissolved and amorphous silica transport during peak-flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments. Biogeochemistry (in press). doi:10.1007/s10533-010-9527-1

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    Article  Google Scholar 

  • Street-Perrott AF, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Process Landf 33:1436–1457

    Article  Google Scholar 

  • Street-Perrott FA, Barker PA, Leng MJ, Sloane HJ, Wooller MJ, Ficken KJ, Swain DL (2008) Towards an understanding of late quaternary variations in the continental biogeochemical cycle of silicon: multi-isotope and sediment-flux data for Lake Rutundu, Mt Kenya, East Africa, since 38 ka BP. J Quat Sci 23:375–387

    Article  Google Scholar 

  • Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 2(7):88–94

    Article  Google Scholar 

  • Struyf E, Van Damme S, Gribsholt B, Middelburg JJ, Meire P (2005) Biogenic silica in freshwater marsh sediments and vegetation. Mar Ecol Prog Ser 303:51–60

    Article  Google Scholar 

  • Struyf E, Opdekamp W, Backx H, Jacobs S, Conley DJ, Meire P (2009) Vegetation and proximity to the river control amorphous Si storage in a riparian wetland (Bierbza National Park, Poland). Biogeosciences 6:623–631

    Article  Google Scholar 

  • Struyf E, Mörth C-M, Humborg C, Conley DJ (2010a) An enormous amorphous silica stock in boreal wetlands. J Geophys Res 115:G04008

    Article  Google Scholar 

  • Struyf E, Smis A, Van Damme S, Garnier J, Govers G, Van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010b) Historical land use change has lowered base-line silica mobilization from landscapes. Nat Commun 1:129. doi:10.1038/ncomms1128

    Article  Google Scholar 

  • Tréguer P, Nelson DM, Vanbennekom AJ, Demaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean—a reestimate. Science 268:375–379

    Article  Google Scholar 

  • Truesdale VW, Greenwood JE, Rendell AR (2005) In vitro, batch-dissolution of biogenic silica in seawater—the application of recent modelling to real data. Prog Oceanogr 66:1–24

    Article  Google Scholar 

  • Van Cappellen P (2003) Biomineralization and global biogeochemical cycles. Rev Miner Geochem 54:357–381

    Article  Google Scholar 

  • Van Cappellen P, Dixit S, van Beusekom J (2002) Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Global Biogeochem Cycles 16:10

    Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747

    Article  Google Scholar 

  • Wolff-Boenisch D, Gabet EJ, Burbank DW, Langner H, Putkonen J (2009) Spatial variations in chemical weathering and CO2 consumption in Nepalese High Himalayan catchments during the monsoon season. Geochim Cosmochim Acta 73:3148–3170

    Article  Google Scholar 

  • Yamada SS, D’Elia CF (1984) Silicic acid regeneration from estuarine sediment cores. Mar Ecol Prog Ser 18:113–118

    Article  Google Scholar 

Download references

Acknowledgments

Eric Struyf would like to thank FWO (Research Foundation Flanders) for personal post doc research funding. We would like to acknowledge Belgian Science Policy (BELSPO) for funding the project “LUSi: Land use changes and silica fluxes in the Scheldt river basin” and FWO for funding project “Tracking the biological control on Si mobilisation in upland ecosystems” (Project nr. G014609N). This project was partially funded by a grant to D. Conley from the Crawfoord Foundation and the Swedish National Science Foundation (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Struyf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struyf, E., Conley, D.J. Emerging understanding of the ecosystem silica filter. Biogeochemistry 107, 9–18 (2012). https://doi.org/10.1007/s10533-011-9590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9590-2

Keywords

Navigation