Biogeochemistry

, Volume 104, Issue 1–3, pp 275–291 | Cite as

Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas

  • Fan-Wei Zeng
  • Caroline A. Masiello
  • William C. Hockaday
Article

Abstract

Rivers draining watersheds that include carbonate bedrock or organic matter (OM)-rich sedimentary rocks frequently have 14C-depleted dissolved inorganic carbon (DIC) relative to rivers draining carbonate- and OM-free watersheds, due to dissolution of carbonate and/or decomposition of ancient OM. However, our results from a subtropical river, the Brazos River in Texas, USA, show that in this watershed human activities appear to dominate basin lithology in controlling the origin and metabolism of DIC. The middle Brazos flows through limestone and coal-bearing bedrock, but DIC isotope data suggest no limestone dissolution or respiration of ancient OM, and instead reflect efficient air–water CO2 exchange, degradation of relatively young OM and photosynthesis in the river as a result of river damming and urban treated wastewater input. The lower Brazos drains only small areas of carbonate and coal-bearing bedrock, but DIC isotope data suggest the strong influence of carbonate dissolution, with a potentially minor contribution from decomposition of old soil organic matter (SOM). Oyster shells and crushed carbonate minerals used in road construction are likely sources of carbonate in the lower Brazos, in addition to natural marl and pedogenic carbonate. Additionally, the generally low pCO2 and high DIC concentration in the Brazos River lead to a low CO2 outgassing:DIC export ratio, distinguishing the Brazos River from other rivers.

Keywords

Carbon cycle Dissolved inorganic carbon Lithology pCO2 River system 

References

  1. Alin SR, Aalto R, Goni MA, Richey JE, Dietrich WE (2008) Biogeochemical characterization of carbon sources in the strickland and fly rivers, Papua New Guinea. J Geophys Res Earth Surf 113:21Google Scholar
  2. Baker A, Cumberland S, Hudson N (2008) Dissolved and total organic and inorganic carbon in some British rivers. Area 40:117–127CrossRefGoogle Scholar
  3. Baldock JA, Masiello CA, Gelinas Y, Hedges JI (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64CrossRefGoogle Scholar
  4. Barnes RT, Raymond PA (2009) The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol 266:327–336CrossRefGoogle Scholar
  5. Barth JAC, Cronin AA, Dunlop J, Kalin RM (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chem Geol 200:203–216CrossRefGoogle Scholar
  6. Boer SI, Arnosti C, van Beusekom JEE, Boetius A (2009) Temporal variations in microbial activities and carbon turnover in subtidal sandy sediments. Biogeosciences 6:1149–1165CrossRefGoogle Scholar
  7. Bouillon S, Abril G, Borges AV, Dehairs F, Govers G, Hughes HJ, Merckx R, Meysman FJR, Nyunja J, Osburn C, Middelburg JJ (2009) Distribution, origin and cycling of carbon in the Tana River (Kenya): a dry season basin-scale survey from headwaters to the delta. Biogeosciences 6:2475–2493CrossRefGoogle Scholar
  8. BRA (2009) Brazos River Watershed Information Center, Brazos River Authority. http://crpdata.brazos.org/. Accessed 20 Aug 2009
  9. BRA (2010) Brazos River Authority, Van M. Walker, GIS Coordinator, personal communication, 13 Jan 2010Google Scholar
  10. Brunet F, Gaiero D, Probst JL, Depetris PJ, Lafaye FG, Stille P (2005) Delta C-13 tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrol Process 19:3321–3344CrossRefGoogle Scholar
  11. Brunet F, Dubois K, Veizer J, Ndondo GRN, Ngoupayou JRN, Boeglin JL, Probst JL (2009) Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin. Cameroon Chem Geol 265:563–572CrossRefGoogle Scholar
  12. Burchuladze AA, Chudy M, Eristavi IV, Pagava SV, Povinec P, Sivo A, Togonidze GI (1989) Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31:771–776Google Scholar
  13. Burkhardt S, Amoroso G, Riebesell U, Sultemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391CrossRefGoogle Scholar
  14. Cai WJ, Wang Y (1998) The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol Oceanogr 43(4):657–668CrossRefGoogle Scholar
  15. Chakrapani GJ, Veizer J (2005) Dissolved inorganic carbon isotopic compositions in the Upstream Ganga river in the Himalayas. Curr Sci 89:553–556Google Scholar
  16. Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110CrossRefGoogle Scholar
  17. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184CrossRefGoogle Scholar
  18. Cronin JG, Follett CR, Shafer GH, Rettman PL (1963) Reconnaissance investigation of the ground-water resources of the Brazos River basin, Texas. Texas Water Commission Bulletin 6310Google Scholar
  19. Doran E (1965) Shell roads in Texas. Geogr Rev 55:223–240CrossRefGoogle Scholar
  20. Douglas R, Staines-Urias F (2007) Dimorphism, shell Mg/Ca ratios and stable isotope content in species of Bolivina (benthic foraminifera) in the Gulf of California, Mexico. J Foraminiferal Res 37:189–203CrossRefGoogle Scholar
  21. EPA (2001) Ambient water quality criteria recommendations. Information supporing the development of state and tribal nutrient criteria. Rivers and streams in nutrient ecoregion X, p 20Google Scholar
  22. Finlay JC (2003) Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry 62:231–252CrossRefGoogle Scholar
  23. Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. W.W. Norton, New YorkGoogle Scholar
  24. Gentry DK, Sosdian S, Grossman EL, Rosenthal Y, Hicks D, Lear CH (2008) Stable isotope and Sr/Ca profiles from the marine gastropod Conus ermineus: testing a multiproxy approach for inferring paleotemperature and paleosalinity. Palaios 23:195–209CrossRefGoogle Scholar
  25. Green RE, Bianchi TS, Dagg MJ, Walker ND, Breed GA (2006) An organic carbon budget for the Mississippi River turbidity plume and plume contributions to air-sea CO2 fluxes and bottom water hypoxia. Estuar Coasts 29:579–597Google Scholar
  26. Griffith DR, Barnes RT, Raymond PA (2009) Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans. Environ Sci Technol 43:5647–5651CrossRefGoogle Scholar
  27. Gu B, Schelske CL, Hodell DA (2004) Extreme 13C enrichments in a shallow hypereutrophic lake: implications for carbon cycling. Limnol Oceanogr 49:1152–1159CrossRefGoogle Scholar
  28. Hackley PC, Guevara EH, Hentz TF, Hook RW (2009) Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: implications for coalbed gas potential. Int J Coal Geol 77:294–309CrossRefGoogle Scholar
  29. Helie JF, Hillaire-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River—isotopic and chemical constraint. Chem Geol 186:117–138CrossRefGoogle Scholar
  30. Hsueh DY, Krakauer NY, Randerson JT, Xu XM, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34:6Google Scholar
  31. Iwata T, Takahashi T, Kazama F, Hiraga Y, Fukuda N, Honda M, Kimura Y, Kota K, Kubota D, Nakagawa S, Nakamura T, Shimura M, Yanagida S, Xeu L, Fukasawa E, Hiratsuka Y, Ikebe T, Ikeno N, Kohno A, Kubota K, Kuwata K, Misonou T, Osada Y, Sato Y, Shimizu R, Shindo K (2007) Metabolic balance of streams draining urban and agricultural watersheds in central Japan. Limnology 8:243–250CrossRefGoogle Scholar
  32. Jones CA (2009) Texas A&M University—Lake Granbury and Bosque River assessment, final scientific/technical report. Texas Water Resources Institute Technical Report, TR-350Google Scholar
  33. Kanduc T, Ogrinc N, Mrak T (2007a) Characteristics of suspended matter in the River Sava watershed, Slovenia. Isotopes Environ Health Stud 43:369–386CrossRefGoogle Scholar
  34. Kanduc T, Szramek K, Ogrinc N, Walter LM (2007b) Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochemistry 86:137–154CrossRefGoogle Scholar
  35. Karim A, Veizer J (2000) Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem Geol 170:153–177CrossRefGoogle Scholar
  36. Keller N, Del-Piero D, Longinelli A (2002) Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione from the Gulf of Trieste (Italy). Mar Biol 140:9–15CrossRefGoogle Scholar
  37. Krusche AV, Martinelli LA, Victoria RL, Bernardes M, de Camargo PB, Ballester MV, Trumbore SE (2002) Composition of particulate and dissolved organic matter in a disturbed watershed of southeast Brazil (Piracicaba River basin). Water Res 36:2743–2752CrossRefGoogle Scholar
  38. Lambs L, Brunet F, Probst JL (2009) Isotopic characteristics of the Garonne River and its tributaries. Rapid Commun Mass Spectrom 23:2543–2550CrossRefGoogle Scholar
  39. Levin I, Kromer B, Wagenback D, Minnich KO (1987) Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39B:89–95CrossRefGoogle Scholar
  40. Livingstone DA (1963) Chemical composition of rivers and lakes. U.S. Geol. Survey Prof Paper: 44-GGoogle Scholar
  41. Lohrenz SE, Cai WJ (2006) Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin. Geophys Res Lett 33:4CrossRefGoogle Scholar
  42. Longworth BE, Petsch ST, Raymond PA, Bauer JE (2007) Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system. Geochim Cosmochim Acta 71:4233–4250CrossRefGoogle Scholar
  43. Matson GC, Hopkins OB (1917) The Corsicana oil and gas field Texas. Contribution to economic geology, Part II. Bulletin 661-F:211–252Google Scholar
  44. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541CrossRefGoogle Scholar
  45. McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo Mar Lett 28:287–299CrossRefGoogle Scholar
  46. McFarland AMS, Hauck LM (2001) Determining nutrient export coefficients and source loading uncertainty using in-stream monitoring data. J Am Water Resour Assoc 37:223–236CrossRefGoogle Scholar
  47. McFarland A, Kiesling R, Pearson C (2001) Characterization of a Central Texas Reservoir with emphasis on factors influencing algal growth. Texas Institute for Applied Environmental Research, Tarleton State University, Stephenville, Texas, TR0104Google Scholar
  48. McNichol AP, Jones GA, Hutton DL, Gagnon AR, Key RM (1994) The rapid preparation of seawater sigma-CO2 for radiocarbon analysis at the National Ocean Sciences AMS facility. Radiocarbon 36:237–246Google Scholar
  49. Meybeck M (1993) Riverine transport of atmospheric carbon—sources, global typology and budget. Water Air Soil Pollut 70:443–463CrossRefGoogle Scholar
  50. Mook WG, Bommerso JC, Staverma Wh (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon-dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  51. Moore RC, Plummer FB (1922) Pennsylvanian stratigraphy of north central Texas. J Geol 30:18–42CrossRefGoogle Scholar
  52. National Center for Earth Resources Observation and Science and U.S. Geological Survey (2005) Conterminous United States Land Cover 1992—200-meter resolution. http://nationalatlas.gov/atlasftp.html
  53. NOAA (2009) National climatic data center. http://www.ncdc.noaa.gov. Accessed 20 Aug 2009
  54. Nordt LC, Hallmark CT, Wilding LP, Boutton TW (1998) Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma 82:115–136CrossRefGoogle Scholar
  55. Nordt L, Orosz M, Driese S, Tubbs J (2006) Vertisol carbonate properties in relation to mean annual precipitation: implications for paleoprecipitation estimates. J Geol 114:501–510CrossRefGoogle Scholar
  56. Oh NH, Raymond PA (2006) Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin. Glob Biogeochem Cycles 20:17CrossRefGoogle Scholar
  57. Oren A, Gurevich P, Anati DA, Barkan E, Luz B (1995) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173–185CrossRefGoogle Scholar
  58. Phillips JD (2007) Geomorphic context, constraints, and change in the lower Brazos and Navasota Rivers, Texas. Phase 2 of the project “Field data collection in support of geomorphic classification of the lower Brazos and Navasota Rivers”, Texas Water Development Board reportGoogle Scholar
  59. Raymond PA, Oh NH (2007) An empirical study of climatic controls on riverine C export from three major U.S. watersheds. Glob Biogeochem Cycles 21:GB2022. doi:10.1029/2006GB002783 CrossRefGoogle Scholar
  60. Raymond PA, Caraco NF, Cole JJ (1997) Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20:381–390CrossRefGoogle Scholar
  61. Raymond PA, Bauer JE, Caraco NF, Cole JJ, Longworth B, Petsch ST (2004) Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Mar Chem 92:353–366CrossRefGoogle Scholar
  62. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  63. Riebschleager KJ, Karthikeyan R (2008) Bacterial impairment assessment for Lake Granbury watershed. Report as of FY2007 for 2007TX266BGoogle Scholar
  64. Rightmire CT (1967) A radiocarbon study of the age and origin of caliche deposits. M.A. thesis, University of Texas, AustinGoogle Scholar
  65. Roelke DL, Brooks BW, Grover JP (2007) Water quality program for Lake Granbury Texas, 4th quarter report. http://lakegranbury.tamu.edu/docs/projectupdate_2007-10-30_ga.pdf. Accessed 10 Aug 2009
  66. Rotatore C, Colman B, Kuzma M (1995) The active uptake of carbon dioxide by the marine diatoms Phaeodactylum tricornutum and Cyclotella sp. Plant Cell Environ 18:913–918CrossRefGoogle Scholar
  67. Ruppert LF, Kirschbaum MA, Warwick PD, Flores RM, Affolter RH, Hatch JR (2002) The US Geological Survey’s national coal resource assessment: the results. Int J Coal Geol 50:247–274CrossRefGoogle Scholar
  68. Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon-dioxide. Nature 356:589–593CrossRefGoogle Scholar
  69. Shah SD, Houston NA, Braun CL (2007) Hydrogeologic characterization of the Brazos River alluvium aquifer, Bosque County to Fort Bend County, Texas. U.S. Geological SurveyGoogle Scholar
  70. Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in US agricultural soils. Soil Sci Soc Am J 66:1249–1255CrossRefGoogle Scholar
  71. Stiller M, Magaritz M (1974) Carbon-13 enriched carbonate in interstitial waters of Lake Kinneret sediments. Limnol Oceanogr 19:849–853CrossRefGoogle Scholar
  72. Stiller M, Rounick JS, Shasha S (1985) Extreme carbon-isotope enrichments in evaporating brines. Nature 316:434–443CrossRefGoogle Scholar
  73. Stoeser DB, Shock N, Green GN, Dumonceaux GM, Heran WD (2005) Geologic map database of Texas: U.S. Geological Survey open data series. http://pubs.usgs.gov/ds/2005/170
  74. Stricklin FL (1961) Degradational stream deposits of the Brazos River, central Texas. Geol Soc Am Bull 72:19–36CrossRefGoogle Scholar
  75. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New YorkGoogle Scholar
  76. Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86CrossRefGoogle Scholar
  77. Tewalt SJ, Kinney SA, Merrill MD (2008) GIS representation of coal-bearing areas in North, Central, and South America: U.S. Geological Survey open-file report 2008-1257. http://pubs.usgs.gov/of/2008/1257/
  78. Titi H, Rasoulian M, Martinez M, Becnel B, Keel G (2003) Long-term performance of stone interlayer pavement. J Transp Eng ASCE 129:118–126CrossRefGoogle Scholar
  79. Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411CrossRefGoogle Scholar
  80. Trumbore S, Da Costa ES, Nepstad DC, De Camargo PB, Martinelli L, Ray D, Restom T, Silver W (2006) Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Glob Change Biol 12:217–229CrossRefGoogle Scholar
  81. Valastro S, Davis EM, Rightmir Ct (1968) University of Texas at Austin radiocarbon dates 6. Radiocarbon 10:384–401Google Scholar
  82. Wachniew P (2006) Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula. Pol Chem Geol 233:293–308CrossRefGoogle Scholar
  83. Wachniew P, Rozanski K (1997) Carbon budget of a mid-latitude, groundwater-controlled lake: isotopic evidence for the importance of dissolved inorganic carbon recycling. Geochim Cosmochim Acta 61:2453–2465CrossRefGoogle Scholar
  84. Wang FS, Wang YC, Zhang J, Xu H, Wei XG (2007) Human impact on the historical change of CO2 degassing flux in River Changjiang. Geochem Trans 8:7Google Scholar
  85. Wisshak M, Correa ML, Gofas S, Salas C, Taviani M, Jakobsen J, Freiwald A (2009) Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp n. from the NE Atlantic. Deep Sea Res I Oceanogr Res Pap 56:374–407CrossRefGoogle Scholar
  86. Yao GR, Gao QZ, Wang ZG, Huang XK, He T, Zhang YL, Jiao SL, Ding J (2007) Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376:255–266CrossRefGoogle Scholar
  87. Zeng F-W, Masiello CA (2010) Sources of CO2 evasion from two subtropical rivers in North America. Biogeochemistry. doi:10.1007/s10533-010-9417-6
  88. Zhang J, Quay PD, Wilbur DO (1995) Carbon-isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114CrossRefGoogle Scholar
  89. Zhang SR, Lu XX, Sun HG, Han JT, Higgitt DL (2009) Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci Total Environ 407:2796–2807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Fan-Wei Zeng
    • 1
  • Caroline A. Masiello
    • 1
  • William C. Hockaday
    • 1
    • 2
  1. 1.Department of Earth ScienceRice UniversityHoustonUSA
  2. 2.Geology DepartmentBaylor UniversityWacoUSA

Personalised recommendations