Skip to main content

Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics

Abstract

There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon (BC)) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral soils (0.34 ± 0.09 kg C m−2) were higher than in organic soils (0.17 ± 0.07 kg C m−2), as determined at four sites by three different 13C Nuclear Magnetic Resonance Spectroscopy-based techniques. Aromatic carbon, protein, BC, and the alkyl:O-alkyl carbon ratio were higher in mineral soil than in organic soil horizons. There was no trend between mineral soil BC stocks and fire frequencies estimated from lake sediment records at four sites, and soil BC was relatively modern (<54–400 years, based on mean Δ14C ranging from 95.1 to −54.7‰). A more extensive analysis (90 soil profiles) of mineral soil BC revealed that interactions among landscape position, organic layer depth, and bulk density explained most of the variance in soil BC across sites, with less soil BC occurring in relatively cold forests with deeper organic layers. We suggest that shallower organic layer depths and higher bulk densities found in warmer boreal forests are more favorable for BC production in wildfire, and more BC is integrated with mineral soil than organic horizons. Soil BC content likely reflected more recent burning conditions influenced by topography, and implications of this for SOC composition (e.g., aromaticity and protein content) are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally-altered Pinus resinosa (Red Pine) wood. Org Geochem 33(9):1093–1109

    Article  Google Scholar 

  • Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA (1992) Aspects of the chemical structure of organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 16:1–42

    Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy. Aust J Soil Res 35(5):1061–1083

    Article  Google Scholar 

  • Baldock JA, Masiello CA, Gelinas Y, Hedges JI (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92(1–4):39–64

    Article  Google Scholar 

  • Benscoter BW, Wieder RK (2003) Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Can J For Res 33:2509–2513

    Article  Google Scholar 

  • Berglund L, Zackrisson O, DeLuca TH (2004) Charcoal amendment of soils alters nitrogen mineralization patterns in Scots pine forests. Soil Biol Biochem 36:2067–2073

    Article  Google Scholar 

  • Carlson LJ, Finney BP (2004) A 13000-year history of vegetation and environmental change at Jan Lake, east-central Alaska. Holocene 14(6):818–827

    Article  Google Scholar 

  • Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Global Biogeochem Cycles 21(3):GB3005

    Article  Google Scholar 

  • Czimczik CI, Preston CM, Schmidt MWI, Schulze ED (2003) How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: stocks, molecular structure, and conversion to black carbon (charcoal). Global Biogeochem Cycles 17(1):1020

    Article  Google Scholar 

  • Czimczik CI, Schmidt MWI, Schulze E-D (2005) Effects of increasing fire frequency on black carbon and soil organic matter in Podzols of Siberian Scots pine forests. Eur J Soil Sci 56:417–428

    Article  Google Scholar 

  • Deluca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ 6(1):18–24

    Article  Google Scholar 

  • DeLuca TH, Nilsson M-C, Zackrisson O (2002) Nitrogen and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214

    Article  Google Scholar 

  • Fang X, Chua T, Schmidt-Rohr K, Thompson ML (2009) Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition. Geochimica et Cosmochimica Acta 74:584–598

    Article  Google Scholar 

  • Finney B, Krumhardt A (2004) Sediment, pollen, and charcoal analyses of an unnamed lake in the White Mountains recreational area, interior Alaska. Report to the Bureau of land management, Northern Field Office, Fairbanks, Alaska, USA, pp 1–34

  • Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Clim Change 72:1–16

    Article  Google Scholar 

  • Gavin DG (2003) Forest soil disturbance intervals inferred from soil charcoal radiocarbon dates. Can J For Res 33:2514–2518

    Article  Google Scholar 

  • Gavin DG, Hallett DJ, Hu FS, Lertzman KP, Prichard SJ, Brown KJ, Lynch JA, Bartlein P, Peterson DL (2007) Forest fire and climate change in western North America: insights from sediment charcoal records. Frontiers Ecol Environ 5(9):499–506

    Article  Google Scholar 

  • Gleixner G, Czimczik C, Kramer C, Luhker BM, Schmidt MWI (2001) Plant compounds and their turnover and stability as soil organic matter. In: Schulze ED, Heimann M, Harrison S (eds) Global biogeochemical cycles in the climate system. Academic Press, London, pp 201–213

    Chapter  Google Scholar 

  • Gregory-Ives I, Smol JP, Finney BP, Lean DRS, Edwards ME (2000) Characteristics and variation in lakes along a north-south transect in Alaska. Arch Hydrobiol 147(2):193–223

    Google Scholar 

  • Guggenberger G, Rodionov A, Shibistova O, Grabe M, Kasansky OA, Fuchs H, Mikheyeva N, Zrazhevskaya G, Flessa H (2008) Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Global Change Biol 14(6):1367–1381

    Article  Google Scholar 

  • Hammes K, Smernik RJ, Skjemstad JO, Herzog A, Vogt UF, Schmidt MWI (2006) Synthesis and characterisation of laboratory-charred grass straw (Oryza saliva) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Org Geochem 37(11):1629–1633

    Article  Google Scholar 

  • Hammes K, Schmidt MWI, Smernik RJ et al (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cycle 21(3):GB3016

    Article  Google Scholar 

  • Hannam KD, Quideau SA, Kishchuk BE, Oh SW, Wasylishen RE (2005) Forest-floor chemical properties are altered by clear-cutting in boreal mixedwood forest stands dominated by trembling aspen and white spruce. Can J For Res 35(10):2457–2468

    Article  Google Scholar 

  • Harden JW, Neff JC, Sandberg DV, Turetsky MR, Ottmar R, Gleixner G, Fries TL, Manies KL (2004) Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Global Biogeochem Cycles 18:GB3014. doi:10.1029/2003GB002194

    Article  Google Scholar 

  • Harden JW, Manies KL, Turetsky MR, Neff JC (2006) Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Global Change Biol 12:2391–2403

    Article  Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kogel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkotter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    Article  Google Scholar 

  • Hinzman LD, Viereck LA, Adams PC, Romanovsky VE, Yoshikawa K (2006) Climate and permafrost dynamics of the Alaskan boreal forest. In: Chapin FS III, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL (eds) Alaska’s changing Boreal Forest. Oxford University Press Inc., New York, pp 39–61

    Google Scholar 

  • Hockaday WC, Masiello CA, Randerson JT, Smernik RJ, Baldock JA, Chadwick OA, Harden JW (2009) Measurement of soil carbon oxidation state and oxidative ratio by C-13 nuclear magnetic resonance. J Geophys Res-Biogeosci 114:G02014

    Article  Google Scholar 

  • Johnstone JF (2006) Response of boreal plant communities to variations in previous fire-free interval. Int J Wildland Fire 15:497–508

    Article  Google Scholar 

  • Johnstone JF, Hollingsworth TN, Chapin FS III, Mack MC (2009) Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biol. doi: 10.1111/j.1365-2486.2009.02051.x

  • Jones DL (1999) Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biol Biogeochem 31(4):613–622

    Article  Google Scholar 

  • Kane ES, Valentine DW, Schuur EAG, Dutta K (2005) Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Can J For Res 35(9):2118–2129

    Article  Google Scholar 

  • Kane ES, Kasischke ES, Valentine DW, Turetsky MR, McGuire AD (2007) Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. J Geophys Res-Biogeosci 112(G3):G03017

    Article  Google Scholar 

  • Kasischke ES, Johnstone JF (2005) Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Can J For Res 35:2164–2177

    Article  Google Scholar 

  • Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33. doi:10.1029/2006GL025677

  • Kasischke ES, Hyer E, Novelli P, Bruhwiler L, French NHF, Sukhinin AI, Hewson JH, Stocks BJ (2005) Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Global Biogeochem Cycles 19:GB1012. doi:10.1029/GB002300

    Article  Google Scholar 

  • Keeler C, Maciel GE (2003) Quantitation in the solid-state 13C NMR analysis of soil and organic soil fractions. Anal Chem 75:2421–2432

    Article  Google Scholar 

  • Kielland K, McFarland JW, Ruess RW, Olson K (2007) Rapid cycling of organic nitrogen in taiga forest ecosystems. Ecosystems 10(3):360–368

    Article  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Krull ES, Swanston CW, Skjemstad JO, McGowan JA (2006) Importance of charcoal in determining the age and chemistry of organic carbon in surface soils. J Geophys Res-Biogeosci 111:G04001. doi:10.1029/2006JG000194

    Article  Google Scholar 

  • Kuhlbusch TAJ (1995) Method for determining black carbon in residues of vegetation fires. Environ Sci Technol 29:2695–2702

    Article  Google Scholar 

  • Kuhlbusch TAJ, Crutzen PJ (1995) Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem Cycles 9(4):491–501

    Article  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Frontiers Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J, Sohi S (2008) Comment on “Fire-derived charcoal causes loss of forest humus”. Science 321:1295c

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems: a review. Mitig Adapt Strat Glob Change 11:403–427

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  Google Scholar 

  • Lynch JA, Clark JS, Bigelow NH, Edwards ME, Finney BP (2002) Geographic and temporal variations in fire history in boreal ecosystems of Alaska. J Geophys Res-Atmospheres 108(D1):8152

    Article  Google Scholar 

  • Lynch JA, Clark JS, Stocks BJ (2004) Charcoal production, dispersal, and deposition from the fort providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Can J For Res 34:1642–1656

    Article  Google Scholar 

  • Masiello CA (2004) New directions in black carbon geochemistry. Mar Chem 92:201–213

    Article  Google Scholar 

  • Michaelson GJ, Ping CL, Epstein H, Kimble JM, Walker DA (2008) Soils and frost boil ecosystems across the North American arctic transect. J Geophys Res-Biogeosci 113(G3):G03S11

    Article  Google Scholar 

  • Miyanishi K, Johnson EA (2002) Process and patterns of duff consumption in the mixedwood boreal forest. Can J For Res 32:1285–1295

    Article  Google Scholar 

  • Nelson PN, Baldock JA (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state C-13 NMR and elemental analyses. Biogeochemistry 72:1–34

    Article  Google Scholar 

  • Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nature Geosci 2:692–695

    Article  Google Scholar 

  • Persson J, Nasholm T (2001) Amino acid uptake: a widespread ability among boreal forest plants. Ecol Lett 4(5):434–438

    Article  Google Scholar 

  • Pietikainen J, Kiikkila O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Ping CL, Michaelson GJ, Kimble JM, Walker DA (1995) Soil acidity and exchange properties of cryogenic soils in Arctic Alaska. Soil Sci Plant Nutr 51:649–653

    Article  Google Scholar 

  • Ping CL, Boone RD, Clark MH, Packee EC, Swanson DK (2006) State factor control of soil formation in interior Alaska. In: Chapin FS, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL (eds) Alaska’s changing boreal forest. Oxford University Press Inc, New York NY, pp 21–38

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  Google Scholar 

  • Rieger S (1983) The genesis and classification of cold soils. Academic press, New York, pp 1–47

    Google Scholar 

  • Rillig MC, Caldwell BA, Wosten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44

    Article  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Gehrt E, Kogel-Knabner I (1999) Charred organic carbon in German chernozemic soils. Eur J Soil Sci 50:351–365

    Article  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Czimczik CI, Glaser B, Prentice KM, Gelinas Y, Kuhlbusch TAJ (2001) Comparative analysis of black carbon in soils. Global Biogeochem Cycles 15:163–167

    Article  Google Scholar 

  • Schmidt-Rohr K, Mao J, Fang X, Thompson M (2008) Characterization of black carbon by advanced NMR. Geological society of America meeting, Houston, TX, 5–9 October

  • Sekiguchi Y, Frye JS, Shafizadeh F (1983) Structure and formation of cellulosic chars. J Appl Polym Sci 28:3513–3525

    Article  Google Scholar 

  • Shetler G, Turetsky MR, Kane E, Kasischke E (2008) Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can J For Res 38:2328–2336

    Article  Google Scholar 

  • Shindo H (1991) Elementary composition, humus composition, and decomposition in soil of charred grassland plants. Soil Sci Plant Nutr 37:651–657

    Google Scholar 

  • Simpson MJ, Hatcher PG (2004) Determination of black carbon in natural organic matter by chemical oxidation and solid-state C-13 nuclear magnetic resonance spectroscopy. Org Geochem 35:923–935

    Article  Google Scholar 

  • Skjemstad JO, Taylor JA, Smernik RJ (1999) Estimation of charcoal (char) in soils. Commun Soil Sci Plant Anal 30:15–16 2283–2298

    Article  Google Scholar 

  • Smernik RJ, Oades JM (2000) The use of spin counting for determining quantitation in solid state C-13 NMR spectra of natural organic matter 1. Model systems and the effects of paramagnetic impurities. Geoderma 96(1–2):101–129

    Article  Google Scholar 

  • Smernik RJ, Oades JM (2001) Background signal in solid state C-13 NMR spectra of soil organic matter (SOM)—quantification and minimization. Solid State Nucl Magn Reson 20(1–2):74–84

    Article  Google Scholar 

  • Smernik RJ, Baldock JA, Oades JM (2002a) Impact of remote protonation on 13C CPMAS NMR quantitation of charred and uncharred wood. Solid State Nucl Magn Reson 22(1):71–82

    Article  Google Scholar 

  • Smernik RJ, Baldock JA, Oades JM, Whittaker AK (2002b) Determination of T1rH relaxation rates in charred and uncharred wood and consequences for NMR quantitation. Solid State Nucl Magn Reson 22:50–70

    Article  Google Scholar 

  • Sollins P, Swanston C, Kleber M, Filley T, Kramer M, Crow S, Caldwell BA, Lajtha K, Bowden R (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38(11):3313–3324

    Article  Google Scholar 

  • Steiner C, Das KC, Garcia M, Forster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Reporting of 14C data. Radiocarbon 19(3):355–363

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23(2):2023

    Article  Google Scholar 

  • Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan publishing, Sterling, VA, pp 85–102

    Google Scholar 

  • Thiffault E, Hannam KD, Quideau SA, Paré D, Bélanger N, Oh S-W, Munson AD (2008) Chemical composition of forest floor and consequences for nutrient availability after wildfire and harvesting in the boreal forest. Plant Soil 308:37–53

    Article  Google Scholar 

  • Urdan TC (2005) Statistics in plain English. Lawrence Erlbaum Associates Inc. Publ, New Jersey, pp 67–81

    Google Scholar 

  • Van Cleve K, Barney R, Schlentner R (1981) Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems. Can J For Res 11:258–273

    Article  Google Scholar 

  • Van Cleve K, Oliver L, Schlentner R, Viereck LA, Dyrness CT (1983) Productivity and nutrient cycling in taiga forest ecosystems. Can J For Res 13:747–766

    Article  Google Scholar 

  • Van Cleve K, Dyrness CT, Marion GM, Erickson R (1993) Controls of soil development on the Tanana River flooplain, interior Alaska. Can J For Res 23(5):941–955

    Article  Google Scholar 

  • Wardle DA, Hornberg G, Zackrisson O, Kalela-Brundin M, Coomes DA (2003) Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972–975

    Article  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 230:629

    Article  Google Scholar 

  • Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87:29–47

    Article  Google Scholar 

  • Schoenberger PJ, Wysock, DA, Benham EC, Broderson WD (2002) Field book for describing and sampling soils version 2.0. Natural resources conservation service, National Soil Survey Center, Lincon, Nebraska

  • Yarie J (1981) Forest fire cycles and life tables: a case study from interior Alaska. Can J For Res 11:554–562

    Article  Google Scholar 

  • Yi S, Manies K, Harden J, McGuire AD (2009) Characteristics of organic soil in black spruce forests: implications for the application of land surface and ecosystem models in cold regions. Geophys Res Lett 36. doi:10.1029/2008GL037014

  • Zackrisson O (1977) Influence of forest fires in North Swedish boreal forest. Oikos 29:22–32

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Harden for ideas and enthusiasm in the early stages of this project. We thank Andy Krumhardt, Jason Lynch, and Mary Edwards for help in obtaining sediment core data, Jim Herriges (Bureau of Land Management, AK) for help in getting to Oops Lake and for the use of a chainsaw there, and Tim Quintal and Lola Oliver for help with black carbon determination, and Jan Skjemstad for kindly providing BC reference materials. We thank Chris Swanston, Ted Schuur, and Tom Brown for advice interpreting radiocarbon values. Some sites described herein are maintained by the Bonanza Creek Long-Term Ecological Research site (funded jointly by NSF grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01-JV11261952-231). Hockaday and Masiello acknowledge support from the Rice University and the Keith-Weiss postdoctoral fellowship, and Kane was funded by the Center for Water Sciences at Michigan State University. Jon O’Donnell, Stuart Jones, E. Matzner, and three anonymous reviewers provided helpful comments in review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kane.

Additional information

E.S. Kane, W.C. Hockaday contributed equally to this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kane, E.S., Hockaday, W.C., Turetsky, M.R. et al. Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics. Biogeochemistry 100, 39–56 (2010). https://doi.org/10.1007/s10533-009-9403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9403-z

Keywords

  • Alkyl carbon
  • Aromatic carbon
  • Black carbon
  • Black spruce
  • Boreal forest
  • Carbon balance
  • Charcoal
  • Fire
  • Organic soil
  • Protein
  • Soil