Skip to main content
Log in

Controls of nitrogen isotope patterns in soil profiles

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

To determine the dominant processes controlling nitrogen (N) dynamics in soils and increase insights into soil N cycling from nitrogen isotope (δ15N) data, patterns of 15N enrichment in soil profiles were compiled from studies on tropical, temperate, and boreal systems. The maximum 15N enrichment between litter and deeper soil layers varied strongly with mycorrhizal fungal association, averaging 9.6 ± 0.4‰ in ectomycorrhizal systems and 4.6 ± 0.5‰ in arbuscular mycorrhizal systems. The 15N enrichment varied little with mean annual temperature, precipitation, or nitrification rates. One main factor controlling 15N in soil profiles, fractionation against 15N during N transfer by mycorrhizal fungi to host plants, leads to 15N-depleted plant litter at the soil surface and 15N-enriched nitrogen of fungal origin at depth. The preferential preservation of 15N-enriched compounds during decomposition and stabilization is a second important factor. A third mechanism, N loss during nitrification and denitrification, may account for large 15N enrichments with depth in less N-limited forests and may account for soil profiles where maximum δ15N is at intermediate depths. Mixing among soil horizons should also decrease differences among soil horizons. We suggest that dynamic models of isotope distributions within soil profiles that can incorporate multiple processes could provide additional information about the history of nitrogen movements and transformations at a site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amundson R, Austin AT, Schuur EAG et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17:1031–1041. doi:10.1029/2002GB001903

    Article  Google Scholar 

  • Azcon-Aquilar GR, Handley LL, Scrimgeour CM (1998) The δ15N of lettuce and barley are affected by AM status and external concentration of N. New Phytol 138:19–26. doi:10.1046/j.1469-8137.1998.00883.x

    Article  Google Scholar 

  • Baisden WT, Amundson R, Brenner DL et al (2002a) A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Global Biogeochem Cycles 16:26

    Google Scholar 

  • Baisden WT, Amundson R, Cook AC, Brenner DL (2002b) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochem Cycles 16:16

    Google Scholar 

  • Barton L, McLay CDA, Schipper LA, Smith CT (1999) Annual denitrification rates in agricultural and forest soils: a review. Aust J Soil Res 37:1073–1093. doi:10.1071/SR99009

    Article  Google Scholar 

  • Billings SA (2006) Soil organic matte dynamics and land use change at a grassland/forest ecotone. Soil Biol Biochem 38:2934–2943. doi:10.1016/j.soilbio.2006.05.004

    Article  Google Scholar 

  • Billings SA, Richter DD (2006) Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development. Oecologia 148:325–333. doi:10.1007/s00442-006-0366-7

    Article  Google Scholar 

  • Bird JA, Torn (2006) Fine roots versus needles: a comparison of 13C and 15 N dynamics in a ponderosa pine forest soil. Biogeochemistry 79:361–382. doi:10.1007/s10533-005-5632-y

    Article  Google Scholar 

  • Boeckx P, Paulino L, Oyarzun C et al (2005) Soil δ15N patterns in old-growth forests of southern Chile as integrator for N-cycling. Isotopes Environ Health Stud 41:249–259. doi:10.1080/10256010500230171

    Article  Google Scholar 

  • Bohlen PJ, Pelletier DM, Groffman PM et al (2004) Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems (N Y, Print) 7:13–27. doi:10.1007/s10021-003-0127-y

    Article  Google Scholar 

  • Caner L, Zeller B, Dambrine E et al (2004) Origin of the nitrogen assimilated by soil fauna living in decomposing beech litter. Soil Biol Biochem 36:1861–1872. doi:10.1016/j.soilbio.2004.05.007

    Article  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    Article  Google Scholar 

  • Clarholm M (1981) Protozoan grazing of bacteria in soil—impact and importance. Microb Ecol 7:343–350. doi:10.1007/BF02341429

    Article  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. Soil Biol Biochem 17:181–187. doi:10.1016/0038-0717(85)90113-0

    Article  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Academic Press, New York

    Google Scholar 

  • DeRuiter PC, Moore JC, Zwart KB et al (1993) Simulation of nitrogen mineralization in the belowground food webs of 2 winter-wheat fields. J Appl Ecol 30:95–106. doi:10.2307/2404274

    Article  Google Scholar 

  • Dominguez J, Bohlen PJ, Parmelee RW (2004) Earthworms increase nitrogen leaching to greater soil depths in row crop agroecosystems. Ecosystems (N Y, Print) 7:672–685. doi:10.1007/s10021-004-0150-7

    Article  Google Scholar 

  • Emmett BA, Kjonaas OJ, Gundersen P et al (1998) Natural abundance of 15N in forests across a nitrogen deposition gradient. For Ecol Manag 101:9–18

    Article  Google Scholar 

  • Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80:150–160

    Google Scholar 

  • Frey SD, Six J, Elliott ET (2003) Reciprocal tansfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biol Biochem 35:1001–1004. doi:10.1016/S0038-0717(03)00155-X

    Article  Google Scholar 

  • Gabet EJ, Reichman OJ, Seabloom EW (2003) The effects of bioturbation on soil processes and sediment transport. Annu Rev Earth Planet Sci 21:249–273. doi:10.1146/annurev.earth.31.100901.141314

    Article  Google Scholar 

  • Garten CT (1993) Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed. Ecology 74:2098–2113. doi:10.2307/1940855

    Article  Google Scholar 

  • Garten CT, van Miegroet H (1994) Relationships between soil nitrogen dynamics and natural 15N abundance in plant foliage from Great Smoky Mountains National Park. Can J Res 24:1636–1645. doi:10.1139/x94-212

    Article  Google Scholar 

  • Gavito ME, Olsson PA (2003) Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 45:181–187. doi:10.1016/S0168-6496(03)00150-8

    Article  Google Scholar 

  • Goldberg SD, Knorr KH, Gebauer G (2008) N2O concentration and isotope signature along profiles provide deeper insight into the fate of N2O in soils. Isotopes Environ Health Stud 41:377–391. doi:10.1080/10256010802507433

    Article  Google Scholar 

  • Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443-456

    Article  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985. doi:10.1111/j.1365-3040.1992.tb01650.x

    Article  Google Scholar 

  • Handley LL, Daft MJ, Wilson J et al (1993) Effects of the ecto- and VA-mycorrhizal fungi Hydnagium carneum and Glomus clarum on the 15 N and 13C values of Eucalyptus globulus and Ricinus communis. Plant Cell Environ 16:375–382. doi:10.1111/j.1365-3040.1993.tb00883.x

    Article  Google Scholar 

  • Handley LL, Austin AT, Robinson D et al (1999a) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199

    Article  Google Scholar 

  • Handley LL, Azcon R, Lozano JMR, Scrimgeour CM (1999b) Plant δ15N associated with arbuscular mycorrhization, drought and nitrogen deficiency. Rapid Commun Mass Spectrom 13:1320–1324. doi:10.1002/(SICI)1097-0231(19990715)13:13<1320::AID-RCM607>3.0.CO;2-M

    Article  Google Scholar 

  • Haubert D, Haggblom MM, Langel R et al (2006) Trophic shift of stable isotopes and fatty acids in Collembola on bacterial diets. Soil Biol Biochem 38:2004–2007. doi:10.1016/j.soilbio.2005.11.031

    Article  Google Scholar 

  • Hedin LO, von Fischer JC, Ostrom NE et al (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79:684–703

    Google Scholar 

  • Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126. doi:10.1046/j.1469-8137.2003.00657.x

    Article  Google Scholar 

  • Hobbie EA, Hobbie JE (2008) Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems (N Y, Print) 11:815–830. doi:10.1007/s10021-008-9159-7

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1999) Interpretation of nitrogen isotope signatures using the NIFTE model. Oecologia 120:405–415. doi:10.1007/s004420050873

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–283. doi:10.1007/PL00008856

    Article  Google Scholar 

  • Hobbie EA, Jumpponen A, Trappe J (2005) Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:258–268. doi:10.1007/s00442-005-0208-z

    Article  Google Scholar 

  • Högberg P (1990) 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol 115:483-486

    Article  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Högberg P, Hogbom L, Schinkel H et al (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214

    Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750. doi:10.1073/pnas.0510185103

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci 104:8902–8906

    Article  Google Scholar 

  • Hübner H (1986) Isotope effects of nitrogen in the soil and biosphere. In: Fritz P, Fontes PC (eds) Handbook of environmental isotope geochemistry, vol 2. Elsevier, Amsterdam, pp 361–425

    Google Scholar 

  • Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 34:1521–1524. doi:10.1016/S0038-0717(02)00126-8

    Article  Google Scholar 

  • Jones DL, Kielland K (2002) Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem 34:209–219. doi:10.1016/S0038-0717(01)00175-4

    Article  Google Scholar 

  • Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout radionuclides. Geology 35:243–246. doi:10.1130/G23355A.1

    Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell J (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–578

    Google Scholar 

  • Kerley SJ, Jarvis SC (1997) Variation in 15N natural abundance of soil, humic fractions and plant materials in a disturbed and an undisturbed grassland. Biol Fert Soil 24:147–152

    Article  Google Scholar 

  • Kitayama K, Iwamoto K (2001) Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229:203–212. doi:10.1023/A:1004853915544

    Article  Google Scholar 

  • Koba K, Tokuchi N, Yoshioka T et al (1998) Natural abundance of 15N in a forest soil. Soil Sci Soc Am J 62:778–781

    Google Scholar 

  • Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84:2021–2025. doi:10.1890/02-3097

    Article  Google Scholar 

  • Kramer MG, Sollins P, Sletten RS (2004) Soil carbon dynamics across a windthrow disturbance sequence in southeast Alaska. Ecology 85:2230–2244. doi:10.1890/02-4098

    Article  Google Scholar 

  • Ledgard SF, Freney JR, Simpson JR (1984) Variations in natural enrichment of 15N in the profiles of some Australian pasture soils. Aust J Soil Res 22:155–164. doi:10.1071/SR9840155

    Article  Google Scholar 

  • Lee KE, Foster RC (1991) Soil fauna and soil structure. Aust J Soil Res 29:745–775. doi:10.1071/SR9910745

    Article  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J et al (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 160:255–272

    Google Scholar 

  • Mariotti A, Pierre D, Vedy JC et al (1980) The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7:293–300

    Google Scholar 

  • Mariotti A, Germon JC, Hubert P et al (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430. doi:10.1007/BF02374138

    Article  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR et al (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    Google Scholar 

  • Melillo JM, Aber JD, Linkins AE et al (1989) Carbon and nitrogen dynamics along the decay continuum—plant litter to soil organic matter. Plant Soil 115:189–198. doi:10.1007/BF02202587

    Article  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S et al (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63. doi:10.1007/BF00328791

    Article  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418. doi:10.1007/s004420050535

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Moore JC, McCann K, de Ruiter PC (2005) Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia (Jena) 49:499–510. doi:10.1016/j.pedobi.2005.05.008

    Article  Google Scholar 

  • Nadelhoffer KF, Fry B (1988) Controls on natural 15N and 13C abundances in forest soil organic-matter. Soil Sci Soc Am J 52:1633–1640

    Google Scholar 

  • Nadelhoffer KJ, Colman BP, Currie WS et al (2004) Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). For Ecol Manag 196:89–107

    Article  Google Scholar 

  • Nardoto GB (2005) Abundância natural de 15N na Amazônia e Cerrado—implicações para a ciclagem de nitrogênio. PhD thesis, Universidade de São Paulo

  • Olsson PA, Jakobsen I, Wallander H (2002) Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin, pp 93–115

    Google Scholar 

  • Pardo LH, Hemond HF, Montoya JP et al (2002) Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Can J Res 32:1126–1136. doi:10.1139/x02-041

    Article  Google Scholar 

  • Pardo LH, Templer PH, Goodale CL et al (2006) Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143–171. doi:10.1007/s10533-006-9015-9

    Article  Google Scholar 

  • Pardo LH, Hemond HF, Montoya JP, Pett-Ridge J (2007) Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire. For Ecol Manag 251:217–230

    Article  Google Scholar 

  • Perez T, Trumbore SE, Tyler SC et al (2000) Isotopic variability of N2O emissions from tropical forest soils. Global Biogeochem Cycles 14:525–535. doi:10.1029/1999GB001181

    Article  Google Scholar 

  • Ponsard S, Arditi R (2000) What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81:852–864

    Google Scholar 

  • Pörtl K, Zechmeister-Boltenstern S, Wanek W et al (2007) Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant Soil 295:79–94. doi:10.1007/s11104-007-9264-y

    Article  Google Scholar 

  • Quideau SA, Graham RC, Feng X, Chadwick OA (2003) Natural isotopic distribution in soil surface horizons differentiated by vegetation. Soil Sci Soc Am J 67:1544–1550

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391. doi:10.1007/BF01972080

    Article  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162. doi:10.1016/S0169-5347(00)02098-X

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi:10.1890/03-8002

    Article  Google Scholar 

  • Schmidt S, Stewart GR (1997) Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ 20:1231–1241. doi:10.1046/j.1365-3040.1997.d01-20.x

    Article  Google Scholar 

  • Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442. doi:10.1007/s004420100671

    Article  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings—estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    Google Scholar 

  • Silfer JA, Engel MH, Macko SA (1992) Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: experimental evidence and geochemical implications. Chem Geol 101:211–221

    Google Scholar 

  • Silver WL, Neff J, McGroddy M et al (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems (N Y, Print) 3:193–209. doi:10.1007/s100210000019

    Article  Google Scholar 

  • Sollins P, Swanston C, Kleber M et al (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324. doi:10.1016/j.soilbio.2006.04.014

    Article  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7

    Article  Google Scholar 

  • Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112. doi:10.1017/S0269915XO5003034

    Article  Google Scholar 

  • Tiessen H, Karamanos RE, Stewart JWB, Selles F (1984) Natural nitrogen-15 abundance as an indicator of soil organic matter transformations in native and cultivated soils. Soil Sci Soc Am J 48:312–315

    Article  Google Scholar 

  • Vervaet H, Boeckx P, Unamuno V et al (2002) Can δ15N profiles in forest soils predict NO3 loss and net N mineralization rates? Biol Fertil Soils 36:143–150. doi:10.1007/s00374-002-0512-2

    Article  Google Scholar 

  • Wada E, Imaizumi R, Takai Y (1984) Natural abundance of 15N in soil organic-matter with special reference to paddy soils in Japan–biogeochemical implications on the nitrogen-cycle. Geochem J 18:109–123

    Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187

    Article  Google Scholar 

  • Wallenda T, Stober C, Högbom L (2000) Nitrogen uptake processes in roots and mycorrhizas. In: Schulze E-D et al (eds) Carbon and nitrogen physiology in forest ecosystems. Springer, Berlin, pp 122–143

    Google Scholar 

  • Yoo K, Amundson R, Heimsath AM, Dietrich WE (2005) Process-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness. Geology 33:917–920. doi:10.1130/G21831.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ben Houlton and two anonymous reviewers for useful comments on an earlier version of the manuscript. This work was suported by NSF grant DEB-0614266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Hobbie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobbie, E.A., Ouimette, A.P. Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95, 355–371 (2009). https://doi.org/10.1007/s10533-009-9328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9328-6

Keywords

Navigation