Skip to main content
Log in

Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We performed surveys of nitrogen (N2)-fixation in three oligotrophic lake-stream systems in the Sawtooth Mountains of central Idaho to address two questions: (1) Which habitat types within linked lake-stream systems (lake pelagic, lake benthic, and stream) exhibit the highest rates of N2 fixation?, and (2) How does N2 fixation compare to the hydrologic flux of nitrogen? A seasonal survey showed that N2 fixation in a single lake and its outlet stream peaked in late summer, when hydrologic N fluxes were lowest. Benthic lake N2-fixation rates by epiphytes were highest at mid-lake depths, where their percent cover was highest, while rates by epipelon were greatest at shallow lake depths. Pelagic N2 fixation was below detection. Stream N2-fixation rates were greatest on rock substrates and in the lake outlet stream. These patterns were supported by a baseflow survey (late July) in three lake-stream ecosystems which confirmed that N2-fixation rates peaked in the lake benthos at shallow depths and on rock substrates in outlet streams. Scaling N2-fixation rates to whole lake and stream areas revealed that N2 fixation could exceed the nitrate, and sometimes the total dissolved nitrogen flux during baseflow in lakes and outlet streams. Despite low rates, total N2-fixation contributions (kg/day) from lakes were greater because they had far larger surface areas than the stream environments. Fixed nitrogen contributions from stream outlets were also relatively high because of high N2-fixation rates and despite low surface areas. This study suggests that N2 fixation could be a seasonally important nitrogen source to nutrient deficient subalpine lake-stream ecosystems. In addition, the frequency and location of lakes could control N2-fixation contributions to watersheds by providing a large area for within-lake N2 fixation, and creating conditions favorable for N2 fixation in outlet streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arp CD, Baker MA (2007) Discontinuities in stream nutrient uptake below lakes in mountain drainage networks. Limnol Oceanogr 52:1987–1990

    Google Scholar 

  • Arp CD, Gooseff MN, Baker MA, Wurtsbaugh WA (2006) Surface-water hydrodynamics and regimes of a small mountain stream-lake ecosystem. J Hydrol 329:500–513. doi:10.1016/j.jhydrol.2006.03.006

    Article  Google Scholar 

  • Arp CD, Schmidt JC, Baker MA, Myers AK (2007) Stream geomorphology in a mountain lake district: hydraulic geometry, sediment sources and sinks, and downstream lake effects. Earth Surf Process Landf 32:525–543. doi:10.1002/esp.1421

    Article  Google Scholar 

  • Baker MA, de Guzman G, Ostermiller JD (2009) Differences in nitrate uptake among benthic algal assemblages in a mountain stream. J North Am Benthol Soc 28:24–33. doi:10.1899/07-129.1

    Article  Google Scholar 

  • Bergey EA, Getty GM (2006) A review of methods for measuring the surface area of stream substrates. Hydrobiologia 556:7–16. doi:10.1007/s10750-005-1042-3

    Article  Google Scholar 

  • Brown PD, Wurtsbaugh WA, Nydick KR (2008) Lakes and forests as determinants of downstream nutrient concentrations in small mountain watersheds. Arct Antarct Alp Res 40:462–469. doi:10.1657/1523-0430(07-052)[BROWN]2.0.CO;2

    Article  Google Scholar 

  • Budy P, Luecke C, Wurtsbaugh WA, Gross HP, Gubala C (1995) Limnology of Sawtooth Valley lakes with respect to potential growth of juvenile Snake River sockeye salmon. Northwest Sci 69:133–150

    Google Scholar 

  • Cairns J Jr (1956) Effects of increased temperature on aquatic organisms. Ind Waste 1:150–152

    Google Scholar 

  • Capone DG (1993) Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in microbial ecology. Lewis, Boca Raton

    Google Scholar 

  • Carmack EC, Wiegand RC, Daley RJ, Gray CBJ, Jasper S, Pharo CH (1986) Mechanisms influencing the circulation and distribution of water mass in a medium residence-time lake. Limnol Oceanogr 31:249–265

    Google Scholar 

  • Carpenter SL, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370. doi:10.1016/0304-3770(86)90031-8

    Article  Google Scholar 

  • Crumpton WG, Isenhart TM, Mitchell PD (1992) Nitrate and organic N analyses with 2nd-derivative spectroscopy. Limnol Oceanogr 37:907–913

    Google Scholar 

  • Cummins KW, Sedell JR, Swanson FJ, Minshall GW, Fisher SG, Cushing CE, Petersen RC, Vannote RL (1983) Organic matter budgets for stream ecosystems: problems in their evaluation. In: Barnes JR, Minshall GW (eds) Stream ecology: application and testing of general ecological theory. Plenum, New York

    Google Scholar 

  • Douglas B (1958) The ecology of attached diatoms and other algae in a small stony stream. J Ecol 46:295–322. doi:10.2307/2257397

    Article  Google Scholar 

  • Doyle RD, Fisher TR (1994) Nitrogen fixation by periphyton and plankton on the Amazon floodplain at Lake Caldo. Biogeochemistry 26:41–66. doi:10.1007/BF02180403

    Article  Google Scholar 

  • Emmett WW (1975) The channels and water of the Upper Salmon River Area, Idaho. US Geological Survey professional paper 870-A. US Government Printing Office, Washington DC

  • Enrich-Prast A, Esteves FA (1998) Diurnal variation of rates of denitrification and nitrogen fixation of periphyton associated with Oryza glumaepatula Steud in an Amazonian lake. Hydrobiologia 368:189–192. doi:10.1023/A:1003258402462

    Article  Google Scholar 

  • Fairchild GW, Velinsky DJ (2006) Effects of small ponds on stream water chemistry. Lake Reservior Manag 22:321–330

    Article  Google Scholar 

  • Finke LR, Seeley HW Jr (1978) Nitrogen fixation (acetylene reduction) by epiphytes of freshwater macrophytes. Appl Environ Microbiol 36:129–138

    Google Scholar 

  • Flett RJ, Hamilton RD, Campbell NER (1976) Aquatic acetylene-reduction techniques: solutions to several problems. Can J Microbiol 22:43–51

    Google Scholar 

  • Flett RJ, Schindler DW, Hamilton RD, Campbell NER (1980) Nitrogen fixation in Canadian Precambrian shield lakes. Can J Fish Aquat Sci 37:494–505. doi:10.1139/f80-064

    Article  Google Scholar 

  • Grimm NB, Petrone KC (1997) Nitrogen fixation in a desert stream ecosystem. Biogeochemistry 37:33–61. doi:10.1023/A:1005798410819

    Article  Google Scholar 

  • Henry JC, Fisher SG (2003) Spatial segregation of periphyton communities in a desert stream: causes and consequences for N cycling. J North Am Benthol Soc 22:511–527. doi:10.2307/1468349

    Article  Google Scholar 

  • Higgins SN, Hecky RE, Taylor WD (2001) Epilithic nitrogen fixation in the rocky littoral zones of Lake Malawi, Africa. Limnol Oceanogr 46:976–982

    Google Scholar 

  • Horne AJ, Carmiggelt CJW (1975) Algal nitrogen fixation in Californian streams: seasonal cycles. Freshw Biol 5:461–470. doi:10.1111/j.1365-2427.1975.tb00148.x

    Article  Google Scholar 

  • Howard-Williams C, Priscu JC, Vincent WF (1989) Nitrogen dynamics in two Antarctic streams. Hydrobiologia 172:51–61. doi:10.1007/BF00031612

    Article  Google Scholar 

  • Howarth RW, Marino R, Lane J, Cole JJ (1988a) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol Oceanogr 33:669–687

    Article  Google Scholar 

  • Howarth RW, Marino R, Cole JJ (1988b) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701

    Google Scholar 

  • Kling GW, Kipphut GW, Miller MM, O’Brien WJ (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43:477–497. doi:10.1046/j.1365-2427.2000.00515.x

    Article  Google Scholar 

  • Koch BJ (2005) Invertebrate-mediated nitrogen cycling in three connected aquatic ecosystems. Thesis, University of Wyoming

    Google Scholar 

  • Larson JH, Frost PC, Zheng Z, Johnston CA, Bridgham SD, Lodge DM, Lamberti GA (2007) Effects of upstream lakes on dissolved organic matter in streams. Limnol Oceanogr 52:60–69

    Google Scholar 

  • Lewis WM Jr, Levine SN (1984) The light response of nitrogen fixation in Lake Valencia, Venezuela. Limnol Oceanogr 29:894–900

    Article  Google Scholar 

  • Livingstone D, Pentecost A, Whitton BA (1985) Diel variations in nitrogen and carbon dioxide fixation by the blue-green alga Rivularia in an upland stream. Phycologia 23:125–133

    Google Scholar 

  • Loeb SL, Reuter JE (1981) The epilithic periphyton community: a five-lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crop. Verh Internat Verein Limnol 21:346–352

    Google Scholar 

  • Mague TH, Burris RH (1973) Biological nitrogen fixation in the Great Lakes. Bioscience 23:236–239. doi:10.2307/1296589

    Article  Google Scholar 

  • Marcarelli AM (2006) Cyanobacterial nitrogen fixation in subalpine, oligotrophic watersheds: spatial and temporal variations. Dissertation, Utah State University

  • Marcarelli AM, Wurtsbaugh WA (2006) Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: an experimental examination. Limnol Oceanogr 51:2278–2289

    Article  Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA (2007) Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams. Freshw Biol 52:2211–2225. doi:10.1111/j.1365-2427.2007.01851.x

    Article  Google Scholar 

  • Marcarelli AM, Baker MA, Wurtsbaugh WA (2008) Is in-stream nitrogen fixation an important nitrogen source for benthic communities and stream ecosystems? J North Am Benthol Soc 27:186–211. doi:10.1899/07-027.1

    Article  Google Scholar 

  • Milner AM, Fastie CL, Chapin FS III, Engstrom DR, Sharman LC (2007) Interactions and linkages among ecosystems during landscape evolution. Bioscience 57:237–247. doi:10.1641/B570307

    Article  Google Scholar 

  • Moeller RE, Roskoski JP (1978) Nitrogen-fixation in the littoral benthos of an oligotrophic lake. Hydrobiologia 60:13–16. doi:10.1007/BF00018682

    Article  Google Scholar 

  • Motomizu S, Toshiaki W, Toei K (1983) Spectrophotometric determination of phosphate in river waters with molybdate and malachite green. Analyst 108:361–367. doi:10.1039/an9830800361

    Article  Google Scholar 

  • Mulholland MR, Bernhardt PW, Heil CA, Bronk DA, O’Neil JM (2006) Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol Oceanogr 51:1762–1776

    Article  Google Scholar 

  • Myers AK, Marcarelli AM, Arp CD, Baker MA, Wurtsbaugh WA (2007) Disruptions of stream sediment size and stability by lakes in mountain watersheds: potential effects on periphyton biomass. J North Am Benthol Soc 26:390–400. doi:10.1899/06-086.1

    Article  Google Scholar 

  • National Atmospheric Deposition Program (2006) NADP Program Office, Illinois State Water Survey 2204. Griffith Dr, Champaign, IL

  • Newbold JD (1992) Cycles and spirals of nutrients. In: Callow P, Petts GE (eds) The rivers handbook. Blackwell Science, Oxford

    Google Scholar 

  • Paerl HW (1985) Microzone formation: its role in the enhancement of aquatic N2 fixation. Limnol Oceanogr 30:1246–1252

    Article  Google Scholar 

  • Reuter JE, Axler RP (1992) Physiological characteristics of inorganic nitrogen uptake by spatially separate algal communities in a nitrogen-deficient lake. Freshw Biol 27:227–236. doi:10.1111/j.1365-2427.1992.tb00535.x

    Article  Google Scholar 

  • Reuter JE, Loeb SL, Goldman CR (1983) Nitrogen fixation in periphyton of oligotrophic Lake Tahoe. In: Wetzel RG (ed) Periphyton of freshwater ecosystems. Dr W Junk, The Hague

    Google Scholar 

  • Reuter JE, Loeb SL, Axler RP, Carlton RG, Goldman CR (1985) Transformations of nitrogen following an epilimnetic N-fertilization in Castle Lake, CA: 1. periphyton responses. Arch Hydrobiol 102:425–433

    Google Scholar 

  • Robinson CT, Minshall GW (1990) Longitudinal development of macroinvertebrate communities below oligotrophic lake outlets. Great Basin Nat 50:303–311

    Google Scholar 

  • Sawatzky CL, Wurtsbaugh WA, Luecke C (2006) The spatial and temporal dynamics of deep chlorophyll layers in high-mountain lakes: effects of nutrients, grazing and herbivore nutrient recycling as growth determinants. J Plankton Res 28:65–86. doi:10.1093/plankt/fbi101

    Article  Google Scholar 

  • Scott JT, Doyle RD, Back JA, Dworkin SI (2007) The role of N2 fixation in alleviating N limitation in wetland metaphyton: enzymatic, isotopic, and elemental evidence. Biogeochemistry 84:207–218. doi:10.1007/s10533-007-9119-x

    Article  Google Scholar 

  • Scott JT, Doyle RD, Prochnow SJ, White JD (2008) Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured? Ecol Appl 18:805–819. doi:10.1890/07-0105.1

    Article  Google Scholar 

  • Scott JT, Lang DA, King RS, Doyle RD (2009) Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: evidence for differential nutrient limitation in stream periphyton. J North Am Benthol Soc 28:57–68. doi:10.1899/07-107.1

    Article  Google Scholar 

  • Staal M, Meysman FJR, Stal LJ (2003) Temperature excludes nitrogen-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425:504–507. doi:10.1038/nature01999

    Article  Google Scholar 

  • Steinhart GB, Gross H, Budy P, Luecke C, Wurtsbaugh WA (1994) Limnological investigations and hydroacoustic surveys of the Sawtooth Valley lakes. Report to Bonneville Power Administration, contract no. DE-B179-91BP22548, Portland, Oregon

  • Vadeboncoeur Y, Vander Zanden MJ, Lodge DM (2002) Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience 52:1–11. doi:10.1641/0006-3568(2002)052[0044:PTLBTR]2.0.CO;2

    Article  Google Scholar 

  • Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E (2006) Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. J North Am Benthol Soc 25:379–392. doi:10.1899/0887-3593(2006)25[379:SAADOV]2.0.CO;2

    Article  Google Scholar 

  • Villbrandt WE, Krumbein WE, Stal LJ (1991) Diurnal and seasonal variations of nitrogen fixation and photosynthesis in cyanobacterial mats. Plant Soil 137:13–16. doi:10.1007/BF02187426

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr 39:1985–1992

    Google Scholar 

  • Wetzel RG (2001) Limnology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Wotton RS (1995) Temperature and lake-outlet communities. J Therm Biol 20:121–125. doi:10.1016/0306-4565(94)00042-H

    Article  Google Scholar 

  • Wurtsbaugh WA, Gross HP, Luecke C, Budy P (1997) Nutrient limitation of oligotrophic sockeye salmon lakes of Idaho (USA). Verh Internat Verein Limnol 26:413–419

    Google Scholar 

  • Wurtsbaugh WA, Baker MA, Gross HP, Brown PD (2005) Lakes as nutrient ‘sources’ for watersheds: a landscape analysis of the temporal flux of nitrogen through subalpine lakes and streams. Verh Internat Verein Limnol 29:645–649

    Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by NSF grant DEB 01-32983 to W. W. and by the Ecology Center at Utah State University. A. M. was also supported by the College of Natural Resources and the Ecology Center at U. S. U., and the NSF-Idaho EPSCoR program (EPS 04-47689) during manuscript preparation. R. Metz and K. Grover-Wier with Boise National Forest and L. Dean with the Sawtooth National Recreation Area arranged access to study sites. Field, lab, and intellectual support and assistance was provided by J. Anderson, C. Arp, M. Baker, B. Brandywie, M. Bozeman, P. Brown, P. Cole, J. Garrett, S. Meats, J. Moore, K. Nydick, D. Ratcliff, and L. Ratcliff. J. Anderson provided cartographic assistance. S. Durham assisted with statistical analyses. Earlier versions of this manuscript were improved by reviews from H. Van Miegroet, C. Luecke and four anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Marcarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcarelli, A.M., Wurtsbaugh, W.A. Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems. Biogeochemistry 94, 95–110 (2009). https://doi.org/10.1007/s10533-009-9311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9311-2

Keywords

Navigation