Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland

Abstract

To provide a reference for wetlands elsewhere we analysed soil nutrients and the vegetation of floodplains and fens in the relatively undisturbed Biebrza-valley, Poland. Additionally, by studying sites along a water-table gradient, and by comparing pairs of mown and unmown sites, we aimed with exploring long-term effects of drainage and annual hay-removal on nutrient availabilities and vegetation response. In undrained fens and floodplains, N mineralization went slowly (0–30 kg N ha−1 year−1) but it increased strongly with decreasing water table (up to 120 kg N ha−1 year−1). Soil N, P and K pools were small in the undisturbed mires. Drainage had caused a shift from fen to meadow species and the disappearance of bryophytes. Biomass of vascular plants increased with increasing N mineralization and soil P. Annual hay-removal tended to have reduced N mineralization and soil K pools, but it had increased soil P. Moreover, N concentrations in vascular plants were not affected, but P and K concentrations and therefore N:P and N:K ratios tended to be changed. Annual hay-removal had induced a shift from P to K limitation in the severely drained fen, and from P to N limitation in the floodplain. The low nutrient availabilities and productivity of the undisturbed Biebrza mires illustrate the vulnerability of such mires to eutrophication in Poland and elsewhere. In nutrient-enriched areas, hay removal may prevent productivity increase of the vegetation, but also may severely alter N:P:K stoichiometry, induce K-limitation at drained sites, and alter vegetation structure and composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Antheunisse AM, Loeb R, Lamers LPM, Verhoeven JTA (2006) Regional differences in nutrient limitation in floodplains of selected European rivers: implications for rehabilitation of characteristic floodplain vegetation. River Res Appl 22:1039–1055. doi:10.1002/rra.956

    Article  Google Scholar 

  2. Bakker JP, Olff H (1995) Nutrient dynamics during restoration of fen meadows by haymaking without fertiliser application. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester

    Google Scholar 

  3. Bedford BL, Walbridge MR, Aldous A (1999) Patterns of nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169

    Google Scholar 

  4. Berendse F, Oomes MJM, Altena HJ, Elberse WT (1992) Experiments on the restoration of species-rich meadows in The Netherlands. Biol Cons 62:59–65. doi:10.1016/0006-3207(92)91152-I

    Article  Google Scholar 

  5. Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–598. doi:10.1046/j.1365-2486.2001.00433.x

    Article  Google Scholar 

  6. Bobbink R, Hornung M, Roelofs JGM (1998) The effect of air-borne nitrogen pollutant on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1046/j.1365-2745.1998.8650717.x

    Article  Google Scholar 

  7. Braekke FH (1987) Nutrient relationships in forest stands: effects of drainage and fertilization on surface peat layers. For Ecol Manag 21:269–284

    Article  Google Scholar 

  8. Bridgham SD, Pastor J, Janssens JA, Chapin C, Malterer TJ (1996) Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65

    Google Scholar 

  9. Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561

    Article  Google Scholar 

  10. De Mars H, Wassen MJ, Peeters WHM (1996) The effect of drainage and management on peat chemistry and nutrient deficiency in the former Jegrznia-floodplain (NE-Poland). Vegetatio 126:59–72

    Google Scholar 

  11. De Mars H, Wassen MJ, Olde Venterink H (1997) Flooding and groundwater dynamics in fens in eastern Poland. J Veg Sci 8:319–328. doi:10.2307/3237320

    Article  Google Scholar 

  12. El-Kahloun M, Gerard M, Meire P (2005) Phosphorus and nitrogen cycling in fen vegetation along different trophic conditions in the Biebrza valley, Poland. Ecohydrol Hydrobiol 5:68–79

    Google Scholar 

  13. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248

    Google Scholar 

  14. Grootjans AP, Schipper PC, Van der Windt HJ (1985) Influence of drainage oN-mineralization and vegetation response in wet meadows: I Calthion palustris stands. Acta Oecol 6:403–417

    Google Scholar 

  15. Grootjans AP, Schipper PC, Van der Windt HJ (1986) Influence of drainage on N-mineralization and vegetation response in wet meadows: II Cirsio-Molinietum stands. Acta Oecol 7:3–14

    Google Scholar 

  16. Heathwaite AL (1990) The effect of drainage on nutrient release from fen peat and its implications for water quality, a laboratory simulation. Water Air Soil Poll 49:159–173. doi:10.1007/BF00279518

    Article  Google Scholar 

  17. Jungk A, Claassen N (1986) Availability of phosphate and potassium as the result of interactions between root and soil in the rhizosphere. Z Pflanzen Boden 149:411–427. doi:10.1002/jpln.19861490406

    Article  Google Scholar 

  18. Kajak A, Okruszko H (1990) Grasslands on drained peats in Poland. In: Breymeyer AI (ed) Ecosystems of the World vol 17A: managed grasslands. Elsevier, Amsterdam, pp 213–253

    Google Scholar 

  19. Koerselman W, Bakker SA, Blom M (1990) Nitrogen, phosphorus and potassium budgets for two small fens surrounded by heavily fertilized pastures. J Ecol 78:428–442. doi:10.2307/2261122

    Article  Google Scholar 

  20. Koerselman W, Van Kerkhoven MB, Verhoeven JTA (1993) Release of inorganic N, P and K in peat soils; effect of temperature, water chemistry and water level. Biogeochem 20:63–81. doi:10.1007/BF00004135

    Article  Google Scholar 

  21. Kotowski W, Van Diggelen R (2004) Fen vegetation composition in relation to light availability. J Veg Sci 15:583–594. doi:10.1658/1100-9233(2004)015[0583:LAAEFI]2.0.CO;2

    Google Scholar 

  22. Laiho R, Laine J (1994) Nitrogen and phosphorus stores in peatlands drained for forestry in Finland. Scand J For Res 9:251–260. doi:10.1080/02827589409382838

    Article  Google Scholar 

  23. Laiho R, Vasander H, Penttilä T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cycles 17:1053. doi:1010.1029/2002GB002015

    Article  Google Scholar 

  24. Laine J, Vasander H, Laiho R (1995a) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802. doi:10.2307/2404818

    Article  Google Scholar 

  25. Laine J, Vasander H, Sallantaus T (1995b) Ecological effects of peatland drainage for forestry. Environ Rev 3:286–303

    Google Scholar 

  26. Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulphate induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205. doi:10.1021/es970362f

    Article  Google Scholar 

  27. Lamers LPM, Loeb R, Antheunisse AM, Miletto M, Lucassen ECHET, Boxman AW, Smolders AJP, Roelofs JGM (2006) Biogeochemical constraints on the ecological rehabilitation of wetland vegetation in river floodplains. Hydrobiol 565:165–186. doi:10.1007/s10750-005-1912-8

    Article  Google Scholar 

  28. Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804. doi:10.1007/s10021-004-0274-9

    Article  Google Scholar 

  29. Marrs RH (1985) Techniques for reducing soil fertility for nature conservation purposes: a review in relation to research at Ropert’s heath, Suffolk, England. Biol Cons 34:307–332. doi:10.1016/0006-3207(85)90038-2

    Article  Google Scholar 

  30. Moore DRJ, Keddy PA, Gaudet CL, Wisheu IC (1989) Conservation of wetlands: do infertile wetlands deserve a higher priority? Biol Cons 47:203–217. doi:10.1016/0006-3207(89)90065-7

    Article  Google Scholar 

  31. Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Ann Rev Ecol Syst 28:621–658. doi:10.1146/annurev.ecolsys.28.1.621

    Article  Google Scholar 

  32. Nienhuis PH (2006) Water and values: ecological research as the basis for water management. Hydrobiol 565:261–275. doi:10.1007/s10750-005-1918-2

    Article  Google Scholar 

  33. Øien DI, Moen A (2001) Nutrient limitation in boreal plant communities and species influenced by scything. Appl Veg Sci 4:197–206

    Article  Google Scholar 

  34. Okruszko H (1990) Wetlands of the Biebrza valley. Their value and future management. Polish Academy of Sciences, Warsaw

    Google Scholar 

  35. Okruszko H (1993) Transformation of fen peat soil under the impact of draining. Zeszyty Problemowe Postepow Nauk Rolniczych 406:3–73

    Google Scholar 

  36. Olde Venterink H, van der Vliet RE, Wassen MJ (2001) Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234:171–179. doi:10.1023/A:1017922715903

    Article  Google Scholar 

  37. Olde Venterink H, Davidsson TE, Kiehl K, Leonardson L (2002a) Impact of drying and re-wetting on N, P and K dynamics in a wetland soil. Plant Soil 243:119–130. doi:10.1023/A:1019993510737

    Article  Google Scholar 

  38. Olde Venterink H, Pieterse NM, Belgers JDM, Wassen MJ, De Ruiter PC (2002b) N, P and K budgets along nutrient availability and productivity gradients in wetlands. Ecol Appl 12:1010–1026. doi:10.1890/1051-0761(2002)012[1010:NPAKBA]2.0.CO;2

    Article  Google Scholar 

  39. Olde Venterink H, Wassen MJ, Verkroost AWM, De Ruiter PC (2003) Species richness-productivity patterns differ between N-, P- and K-limited wetlands. Ecology 84:2191–2199. doi:10.1890/01-0639

    Article  Google Scholar 

  40. Olde Venterink H, Vermaat JE, Pronk M, Wiegman F, Van der Lee GEM, Van den Hoorn MW, Higler LWG, Verhoeven JTA (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl Veg Sci 9:163–174. doi:10.1658/1402-2001(2006)9[163:IOSDAD]2.0.CO;2

    Google Scholar 

  41. Olff H, Berendse F, De Visser W (1994) Changes in nitrogen mineralization, tissue nutrient concentrations and biomass compartmentation after cessation of fertilizer application. J Ecol 82:611–620. doi:10.2307/2261268

    Article  Google Scholar 

  42. Olila OG, Reddy KR, Stites DL (1997) Influence of draining on soil phosphorus forms and distribution in a constructed wetland. Ecol Eng 9:157–169. doi:10.1016/S0925-8574(97)10006-4

    Article  Google Scholar 

  43. Oomes MJM, Olff H, Altena HJ (1996) Effects of vegetation management and raising the water table on nutrient dynamics and vegetation change in a wet grassland. J Appl Ecol 33:576–588. doi:10.2307/2404986

    Article  Google Scholar 

  44. Oswit J (1973) The development of peatlands in the lower Biebrza valley versus water conditions. Roczn. Nauk Roln. Serie D, pp 143 (in Polish)

  45. Palczynski A (1984) Natural differentiation of plant communities in relation to hydrological conditions of the Biebrza Valley. Pol Ecol Stud 10:347–385

    Google Scholar 

  46. Pinay G, Ruffinoni C, Fabre A (1995) Nitrogen cycling in two riparian forest soils under different geomorphic conditions. Biogeochem 30:9–29. doi:10.1007/BF02181038

    Article  Google Scholar 

  47. Spink A, Sparks RE, Van Oorschot M, Verhoeven JTA (1998) Nutrient dynamics of large river floodplains. Reg Riv 14:203–216. doi:10.1002/(SICI)1099-1646(199803/04)14:2<203::AID-RRR498>3.0.CO;2-7

    Article  Google Scholar 

  48. Stanners D, Bourdeau P (1995) Europe’s environment, the Dobris assessment. European Environmental Agency, Copenhagen

    Google Scholar 

  49. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. doi:10.1126/science.1094678

    Article  Google Scholar 

  50. Sundström E, Magnusson T, Hånell B (2000) Nutrient conditions in drained peatlands along a north–south climatic gradient in Sweden. For Ecol Manag 126:149–161

    Article  Google Scholar 

  51. Updegraff K, Bridgham SD, Pastor J, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163. doi:10.2307/1942060

    Article  Google Scholar 

  52. Van Bodegom PM, Oosthoek A, Broekman R, Bakker C, Aerts R (2006) Raising groundwater differentially affects mineralization and plant species abundance in dune slacks. Ecol Appl 16:1785–1795. doi:10.1890/1051-0761(2006)016[1785:RGDAMA]2.0.CO;2

    Article  Google Scholar 

  53. Van der Wal R, Pearce ISK, Brooker RW (2005) Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142:159–168. doi:10.1007/s00442-004-1706-0

    Article  Google Scholar 

  54. Van Duren IC, Pegtel DM (2000) Nutrient limitations in wet, drained and rewetted fen meadows: evaluation of methods and results. Plant Soil 220:35–47. doi:10.1023/A:1004735618905

    Article  Google Scholar 

  55. Van Oorschot M, Robbemont E, Boerstal M, Van Strien I, Van Kerkhoven-Smitsch M (1997) Effects of enhanced nutrient availability on plant and soil nutrient dynamics in two English riverine ecosystems. J Ecol 85:167–180. doi:10.2307/2960649

    Article  Google Scholar 

  56. Verhoeven JTA, Arts HHM (1987) Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. II: N and P accumulation in plant biomass in relation to the release of inorganic N and P in the peat soil. Oecologia 72:557–561. doi:10.1007/BF00378982

    Article  Google Scholar 

  57. Verhoeven JTA, Koerselman W, Meuleman AFM (1996) Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol Evol 11:494–497. doi:10.1016/S0169-5347(96)10055-0

    Article  Google Scholar 

  58. Vitt DH, Chee WL (1990) The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106. doi:10.1007/BF00032163

    Article  Google Scholar 

  59. Walbridge MR, Navaratnam JA (2006) Phosphorous in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 231–258

    Google Scholar 

  60. Wassen MJ, Joosten JHJ (1996) In search of a hydrological explanation for vegetation changes along a fen gradient in the Biebrza upper basin (Poland). Vegetatio 124:191–209

    Google Scholar 

  61. Wassen MJ, Olde Venterink H (2006) Comparison of nitrogen and phosphorus fluxes in some European fens and floodplains. Appl Veg Sci 9:213–222. doi:10.1658/1402-2001(2006)9[213:CONAPF]2.0.CO;2

    Article  Google Scholar 

  62. Wassen MJ, Barendregt A, Palczynski A, De Smidt JT, De Mars H (1990) The relationship between fen vegetation gradients, groundwater flow and flooding in an undrained valley mire at Biebrza, Poland. J Ecol 78:1106–1122

    Article  Google Scholar 

  63. Wassen MJ, Olde Venterink HGM, De Swart EOAM (1995) Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. J Veg Sci 6:5–16. doi:10.2307/3236250

    Article  Google Scholar 

  64. Wassen MJ, van Diggelen R, Wolejko L, Verhoeven JTA (1996) A comparison of fens in natural and artificial landscapes. Vegetatio 126:5–26

    Google Scholar 

  65. Wassen MJ, Van der Vliet R, Verhoeven JTA (1998) Nutrient limitation in the Biebrza valley fens and floodplain (Poland). Acta Bot Neerl 47:241–253

    Google Scholar 

  66. Wassen MJ, Peeters WHM, Olde Venterink H (2003) Patterns in vegetation, hydrology, and nutrient availability in an undisturbed floodplain in Poland. Plant Ecol 165:27–43. doi:10.1023/A:1021493327180

    Article  Google Scholar 

  67. Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550. doi:10.1038/nature03950

    Article  Google Scholar 

  68. Wheeler BD, Shaw SC (1991) Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales. J Ecol 79:285–301. doi:10.2307/2260713

    Article  Google Scholar 

  69. Zurek S (1984) Relief, geologic structure and hydrography of the Biebrza ice-marginal valley. Pol Ecol Stud 10:239–252

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Dutch PIN-MATRA fund for Nature Management in Central and Eastern Europe (project 2001/039).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harry Olde Venterink.

 

 

See Appendix 1.

Appendix 1 Vegetation composition and cover of species in floodplain (FL), undrained fens (UF), drained fen (DF) and severely drained fen (SDF) sites of the Biebrza Valley, Poland. Sites in FL, DF and SDF were selected in pairs: one site unmown, the other mown and hay removed

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olde Venterink, H., Kardel, I., Kotowski, W. et al. Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland. Biogeochemistry 93, 235–252 (2009). https://doi.org/10.1007/s10533-009-9300-5

Download citation

Keywords

  • Ecological stoichiometry
  • Fen
  • Floodplain
  • Nitrogen mineralization
  • Nutrient limitation
  • Phosphorus
  • Potassium
  • Wetland