Biogeochemistry

, Volume 93, Issue 1–2, pp 143–157 | Cite as

The regional and global significance of nitrogen removal in lakes and reservoirs

  • John A. Harrison
  • Roxane J. Maranger
  • Richard B. Alexander
  • Anne E. Giblin
  • Pierre-Andre Jacinthe
  • Emilio Mayorga
  • Sybil P. Seitzinger
  • Daniel J. Sobota
  • Wilfred M. Wollheim
Article

Abstract

Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year−1 from watersheds globally. Small lakes (<50 km2) were critical in the analysis, retaining almost half (9.3 Tg N year−1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0–100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain ~33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area:lake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale.

Keywords

Nitrogen  Lakes  Reservoirs Denitrification Global limnology Nitrogen removal 

References

  1. Ahlgren I, Sorenssson F et al (1994) Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23(6):367–377Google Scholar
  2. Alexander RB, Smith RA et al (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403(17):758–761CrossRefGoogle Scholar
  3. Alexander RB, Elliott AH et al (2002) Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand. Water Resour Res 38(12):1268. doi:10.1029/2001WR00878 CrossRefGoogle Scholar
  4. Alexander RB, Böhlke JK et al (2008) Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry. doi:10.1007/s10533-008-9274-8 Google Scholar
  5. Andersen HVJM (1974) Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Arch Hydrobiol 74(4):528–550Google Scholar
  6. Ayers JC (1970) Lake Michigan environmental survey. Great Lakes Research Division Special Report 49. University of Michigan, Ann ArborGoogle Scholar
  7. Bouwman AF, Van Drecht G et al (2005) Exploring changes in river nitrogen export the world’s oceans. Global Biogeochem Cycles 19:GB1002. doi:10.1029/2004GB002314 CrossRefGoogle Scholar
  8. Brahney J, Bos DG et al (2006) The influence of nitrogen limitation on delta N-15 and carbon:nitrogen ratios in sediments from sockeye salmon nursery lakes in British Columbia, Canada. Limnol Oceanogr 51(5):2333–2340Google Scholar
  9. Calderoni A, Mosello R, Tartari G (1978) Hydrochemistry and chemical budget or Lago Mergozzo (Northern Italy). Memorie dell’Istituto Italiano di Idrobiologia 36:239–269Google Scholar
  10. Carpenter SR, Caraco NF et al (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568CrossRefGoogle Scholar
  11. Cole JJ, Prairie YT et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):171–184CrossRefGoogle Scholar
  12. Dillon PJ, Molot LA (1990) The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry 11(1):23–43CrossRefGoogle Scholar
  13. Downing JA, Prairie YT et al (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397Google Scholar
  14. Dudel G, Kohl JG (1992) The nitrogen budget of a shallow lake (Grosser Muggelsee, Berlin). Int Rev Gesamten Hydrobiol 77:43–72CrossRefGoogle Scholar
  15. Dumont E, Harrison JA et al (2005) Global distribution and sources of DIN export to the coastal zone: results from a spatially explicit, global model (NEWS-DIN). Global Biogeochem Cycles 19, GB4S02:1–14. doi:10.1029/2005GB002488 GB4S02Google Scholar
  16. Fekete BM, Vorosmarty CJ et al (1999) Global, composite runoff fields based on observed river discharge and simulated water balances; Report Number 22 (2nd edn.), Global Runoff Data Center. Federal Institute of Hydrology, KoblenzGoogle Scholar
  17. Galloway JN, Aber JD et al (2003) The nitrogen cascade. Bioscience 53:341–356CrossRefGoogle Scholar
  18. Galloway JN, Dentener FJ et al (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  19. Garnier J, LePorcq B et al (1999) Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47:119–146Google Scholar
  20. Green PA, Vorosmarty CJ et al (2004) Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry 68(1):71–105CrossRefGoogle Scholar
  21. Howarth RW et al (1996) Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35(1):75–139CrossRefGoogle Scholar
  22. Jensen JP, Kristensen P, Jeppesen E (1990) Relationships between nitrogen loading and in-lake concentrations in shallow Danish lakes. Verh Internat Verein Limnol 24:201–204Google Scholar
  23. Jensen JP, Jeppesen E, Kristensen P, Christensen PB, Søndergaard M (1992) Nitrogen loss and denitrification as studied in relation to reductions in nitrogen loading in a shallow, hypertrophic lake (Lake Søbygård, Denmark). Int Rev Gesamten Hydrobiol 77:29–42CrossRefGoogle Scholar
  24. Jeppesen E, Jensen JP et al (1998) Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Arch Hydrobiol 142(2):129–151Google Scholar
  25. Kelly VJ (2001) Influence of reservoirs on solute transport: a regional-scale approach. Hydrol Process 15:1227–1249CrossRefGoogle Scholar
  26. Kelly CA, Rudd JWM et al (1987) Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochemistry 3(1/3):129–140CrossRefGoogle Scholar
  27. Kelly CA, Rudd JWM et al (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1344CrossRefGoogle Scholar
  28. Leavitt PR, Brock CS, Ebel C, Patoine A (2006) Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnol Oceanogr 51:2262–2277Google Scholar
  29. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1–22CrossRefGoogle Scholar
  30. Lewis WM Jr (1983) A revised classification of lakes based on mixing. Can J Fish Aquat Sci 40:1779–1787Google Scholar
  31. Mengis M, Gachter R et al (1997) Nitrogen elimination in two deep eutrophic lakes. Limnol Oceanogr 42(7):1530–1543Google Scholar
  32. Molot LA, Dillon PJ (1993) Nitrogen mass balances and denitrification rates in central Ontario Lakes. Biogeochemistry 20(3):195–212CrossRefGoogle Scholar
  33. Mulholland PJ, Helton AM et al (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452(7184):202–205CrossRefGoogle Scholar
  34. Nõges P (2005) Water and nutrient mass balance of the partly meromictic temperate Lake Verevi. Hydrobiologia 547:21–31. doi:10.1007/s10750-005-4140-3 CrossRefGoogle Scholar
  35. Nõges P, Järvet A, Tuvikene L, Nõges T (1998) The budgets of nitrogen and phosphorus in shallow eutrophic Lake Võrtjärv. Hydrobiologia 363:219–227CrossRefGoogle Scholar
  36. Patoine A, Graham MD, Leavitt PR (2006) Spatial variation of nitrogen fixation in lakes of the northern Great Plains. Limnol Oceanogr 51:1665–1677Google Scholar
  37. Peterson BJ, Wollheim W et al (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90CrossRefGoogle Scholar
  38. Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130CrossRefGoogle Scholar
  39. Salas HJ, Martino P (1991) A simplified phosphorus trophic state model for warm-water tropical lakes. Water Res 25(3):341–350CrossRefGoogle Scholar
  40. Saunders DL, Kalff J (2001) Nitrogen retention in wetlands, lakes and reservoirs. Hydrobiologia 443:205–212CrossRefGoogle Scholar
  41. Seitzinger SP, Harrison JA (2008) Sources and delivery of nitrogen to coastal systems, Chap. 8. In: Capone D, Bronk DA, Mullholland MR, Carpenter E (eds) Nitrogen in the marine environment, 2nd edn. Academic Press, New YorkGoogle Scholar
  42. Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochem Cycles 12(1):93–113CrossRefGoogle Scholar
  43. Seitzinger SP, Styles RV et al (2002) Nitrogen retention in rivers: model development and application to watersheds in the northeastern USA. Biogeochemistry 57:199–237CrossRefGoogle Scholar
  44. Seitzinger SP, Harrison JA et al (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090CrossRefGoogle Scholar
  45. Takeuchi K (1997) Least marginal environmental impact rule for reservoir development. Hydrol Sci 42(4):583–597CrossRefGoogle Scholar
  46. Teodoru C, Wehrli B (2005) Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76(3):539–565CrossRefGoogle Scholar
  47. Tomaszek JA, Koszelnik P (2003) A simple model of nitrogen retention in reservoirs. Hydrobiologia 504:51–58CrossRefGoogle Scholar
  48. Vitousek PM, Aber JD et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750Google Scholar
  49. Wetzel RG (2001) Limnology. Lake and river ecosystems, 3rd edn. Academic Press, San Diego. xvi, 1006 ppGoogle Scholar
  50. Windolf J, Jeppesen E et al (1996) Modelling of seasonal variation in nitrogen retention and in-lake concentration: A four-year mass balance study in 16 shallow Danish lakes. Biogeochemistry 33(1):25–44CrossRefGoogle Scholar
  51. Wollheim WM, Vörösmarty CJ et al (2006) Relationship between river size and nutrient removal. Geophys Res Lett 33(6). doi:10.102912006GL025845
  52. Wollheim WM, Vörösmarty CJ et al (2008) Global N removal by freshwater aquatic systems: a spatially distributed, within-basin approach. Global Biogeochem Cycles GB2026. doi:10.11029/2007GB002936

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • John A. Harrison
    • 1
  • Roxane J. Maranger
    • 2
  • Richard B. Alexander
    • 3
  • Anne E. Giblin
    • 4
  • Pierre-Andre Jacinthe
    • 5
  • Emilio Mayorga
    • 6
  • Sybil P. Seitzinger
    • 6
  • Daniel J. Sobota
    • 1
  • Wilfred M. Wollheim
    • 7
  1. 1.School of Earth and Environmental SciencesWashington State UniversityVancouverUSA
  2. 2.Département des Sciences BiologiquesUniversité de MontréalMontrealCanada
  3. 3.US Geological SurveyRestonUSA
  4. 4.Marine Biological LaboratoryThe Ecosystems CenterWoods HoleUSA
  5. 5.Indiana University-Purdue UniversityIndianapolisUSA
  6. 6.Institute of Marine and Coastal Sciences, Rutgers/NOAA CMER ProgramRutgers UniversityNew BrunswickUSA
  7. 7.Water Systems Analysis Group, Complex Systems Research Center, Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA

Personalised recommendations