, Volume 93, Issue 1–2, pp 159–178 | Cite as

Modeling denitrification in aquatic sediments

  • Katja FennelEmail author
  • Damian Brady
  • Dominic DiToro
  • Robinson W. Fulweiler
  • Wayne S. Gardner
  • Anne Giblin
  • Mark J. McCarthy
  • Alexandra Rao
  • Sybil Seitzinger
  • Marie Thouvenot-Korppoo
  • Craig Tobias


Sediment denitrification is a major pathway of fixed nitrogen loss from aquatic systems. Due to technical difficulties in measuring this process and its spatial and temporal variability, estimates of local, regional and global denitrification have to rely on a combination of measurements and models. Here we review approaches to describing denitrification in aquatic sediments, ranging from mechanistic diagenetic models to empirical parameterizations of nitrogen fluxes across the sediment-water interface. We also present a compilation of denitrification measurements and ancillary data for different aquatic systems, ranging from freshwater to marine. Based on this data compilation we reevaluate published parameterizations of denitrification. We recommend that future models of denitrification use (1) a combination of mechanistic diagenetic models and measurements where bottom-waters are temporally hypoxic or anoxic, and (2) the much simpler correlations between denitrification and sediment oxygen consumption for oxic bottom waters. For our data set, inclusion of bottom water oxygen and nitrate concentrations in a multivariate regression did not improve the statistical fit.


Denitrification Diagenetic model Sediment 



Dissimalatory nitrate reduction to ammonium


Oxygen-demand units


Sediment flux model


Sediment oxygen consumption



Discussions reflected in this paper were initiated in November 2006 at a Modeling Workshop organized by the Research Coordination Network on Denitrification ( We thank the organizers and gratefully acknowledge the constructive criticism from Eric Davidson and two anonymous reviewers. We thank Jane Tucker for working up the data sets from Massachusetts Bay and Boston Harbor. Financial support for AEG to work on the manuscript came from NSF NSF-DEB-0423565. KF, DB and DDT acknowledge support from NOAA CHRP grant NA07NOS4780191. NOAA publication number 102.

Supplementary material

10533_2008_9270_MOESM1_ESM.xls (384 kb)
(XLS 383 kb)


  1. Aller RC (1980) Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochim Cosmochim Acta 44(12):1955–1965CrossRefGoogle Scholar
  2. Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In: Blackburn TH, Soerensen J (eds) Nitrogen cycling in coastal marine environments. Wiley, New York, pp 301–338Google Scholar
  3. Aller RC, Mackin JE, Ullman WJ, Wang CH, Tsai SM, Jin JC et al (1985) Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea. Cont Shelf Res 4(1/2):227–251CrossRefGoogle Scholar
  4. Altabet MA, Francois R, Murray DW, Prell WL (1995) Climate-related variations in denitrification in the Arabian Sea from sediment 15 N/14 N ratios. Nature 373(6514):506–509CrossRefGoogle Scholar
  5. An S, Gardner WS, Kana T (2001) Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Appl Environ Microbiol 67:1171–1178CrossRefGoogle Scholar
  6. Bender M, Jahnke R, Weiss R, Martin W, Heggie DT, Orchardo J et al (1989) Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim Cosmochim Acta 53(3):685–697CrossRefGoogle Scholar
  7. Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, PrincetonGoogle Scholar
  8. Billen G, Garnier J (1999) Nitrogen transfers through the Seine drainage network: a budget based on the application of the Riverstrahler’ model. Hydrobiologia 410:139–150CrossRefGoogle Scholar
  9. Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton development in whole drainage networks: the Riverstrahler Model applied to the Seine river system. Hydrobiologia 289(1):119–137CrossRefGoogle Scholar
  10. Boudreau BP (1997) Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, BerlinGoogle Scholar
  11. Boyer EW, Alexander RB, Parton WJ, Li C, Butterbach-Bahl K, Donner SD et al (2006) Modeling denitrification in terrestrial and aquatic ecosystems at regional scales: current approaches and needs. Ecol Appl 16:2123–2142CrossRefGoogle Scholar
  12. Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, PrincetonGoogle Scholar
  13. Caffrey JM, Sloth NP, Kaspar HF, Blackburn TH (1993) Effect of organic loading on nitrification and denitrification in a marine microcosm. FEMS Microbiol Ecol 12:159–167CrossRefGoogle Scholar
  14. Caraco N, Cole J, Likens GE (1990) A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9(3):277–290CrossRefGoogle Scholar
  15. Cerco CF, Seitzinger SP (1997) Measured and modeled effects of benthic algae on eutrophication in Indian River-Rehoboth Bay, Delaware. Estuar Coasts 20(1):231–248CrossRefGoogle Scholar
  16. Childs CR, Rabalais NN, Turner RE, Proctor LM (2002) Sediment denitrification in the Gulf of Mexico zone of hypoxia. Mar Ecol Prog Ser 240:285–290CrossRefGoogle Scholar
  17. Christensen JP (1994) Carbon export from continental shelves, denitrification and atmospheric carbon dioxide. Cont Shelf Res 14(5):547–576CrossRefGoogle Scholar
  18. Cornwell J, Owens M (1999) Benthic phosphorus cycling in Lake Champlain: results of an integrated field sampling/water quality modeling study. Part B: Field studies. Lake Champlain Basin Program. Horn Point Laboratory, Cambridge MD. Technical report TS-168-98Google Scholar
  19. Cowan JLW, Boynton WR (1996) Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: seasonal patterns, controlling factors and ecological significance. Estuaries 19(3):562–580CrossRefGoogle Scholar
  20. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422(6932):606–608CrossRefGoogle Scholar
  21. Devol AH (2008) Chapter 6: Denitrification including anammox. In: Capone D, Carpenter E, Mullholland M, Bronk D (eds) Nitrogen in the marine environment. Elsevier, Amsterdam, pp 263–302CrossRefGoogle Scholar
  22. Devol AH, Christensen JP (1993) Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J Mar Res 51:345–372CrossRefGoogle Scholar
  23. Devol AH, Codispoti LA, Christensen JP (1997) Summer and winter denitrification rates in western Arctic shelf sediments. Cont Shelf Res 17(9):1029–1050CrossRefGoogle Scholar
  24. DiToro DM (2001) Sediment flux modeling. Wiley-Interscience, New YorkGoogle Scholar
  25. DiToro DM, Fitzpatrick JJ (1993) Chesapeake Bay sediment flux model. US EPA Contract Report, AnnapolisGoogle Scholar
  26. Emery K (1968) Relict sediments on continental shelves of world. AAPG Bull 52(3):445–464Google Scholar
  27. Engström P, Dalsgaard T, Hulth S, Aller RC (2005) Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta 69(8):2057–2065CrossRefGoogle Scholar
  28. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275CrossRefGoogle Scholar
  29. Fennel K, Follows M, Falkowski PG (2005) The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic Ocean. Am J Sci 305:526–545CrossRefGoogle Scholar
  30. Fennel K, Wilkin J, Levin J, Moisan J, O’Reilly J, Haidvogel D (2006) Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochemical Cycles 20, GB3007, doi: 10.1029/2005GB002456
  31. Fulweiler RW (2007) Climate impacts on benthic-pelagic coupling and biogeochemistry in Narragansett Bay, RI. PhD Dissertation, University of Rhode IslandGoogle Scholar
  32. Fulweiler RW, Nixon SW (2008) Responses of benthic-pelagic coupling to climate change in a temperate estuary. Hydrobiologia (in press)Google Scholar
  33. Fulweiler R, Nixon S, Buckley B, Granger S (2007) Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448:180–182CrossRefGoogle Scholar
  34. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB et al (2003) The nitrogen cascade. Bioscience 53(4):341–356CrossRefGoogle Scholar
  35. Gardner WS, Briones EE, Kaegi EC, Rowe GT (1993) Ammonium excretion by benthic invertebrates and sediment-water nitrogen flux in the Gulf of Mexico near the Mississippi River plume. Estuaries 16(4):799–808CrossRefGoogle Scholar
  36. Gardner WS, McCarthy MJ, An S, Sobolev D, Sell KS, Brock D (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnol Oceanogr 51(1):558–568Google Scholar
  37. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophyceae in the drainage network of the Seine River: Observations and modeling. Limnol Oceanogr 40(4):750–765Google Scholar
  38. Giblin AE, Hopkinson CS, Tucker J (1997) Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries 20:346–364CrossRefGoogle Scholar
  39. Gold AJ, Jacinthe PA, Groffman PM, Wright WR, Puffer RH (1998) Patchiness in groundwater nitrate removal in a riparian forest. Environ Qual 27:146–155Google Scholar
  40. Harrison J, Maranger R, Alexander RB, Cornwell J, Giblin A, Jacinthe PA, et al. (2008) The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry. doi: 10.1007/s10533-008-9272-x Google Scholar
  41. Huettel M, Webster IT (2001) Advective flow in permeable sediments. In: Boudreau BP, Jørgensen BB (eds) The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford, pp 144–179Google Scholar
  42. Jacinthe PA, Groffman PM, Gold AJ, Mosier A (1998) Patchiness in microbial nitrogen transformations in groundwater in a riparian forest. J Environ Quality 27:156–164CrossRefGoogle Scholar
  43. Jahnke R (1985) A model of microenvironments in deep-sea sediments: formation and effects on pore water profiles. Limnol Oceanogr 30(5):956–965Google Scholar
  44. Jahnke RA, Emerson SR, Murray JW (1982) A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments. Limnol Oceanogr 27(4):610–623Google Scholar
  45. Jahnke RA, Richards M, Nelson J, Robertson C, Rao A, Jahnke D (2005) Organic matter remineralization and pore water exchange rates in permeable South Atlantic Bight continental shelf sediments. Contl Shelf Res 25:1433–1452CrossRefGoogle Scholar
  46. Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC (1994) Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66(23):4166–4170CrossRefGoogle Scholar
  47. Kana TM, Sullivan MB, Cornwell JC, Groszkowski KM (1998) Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnol Oceanogr 43(2):334–339Google Scholar
  48. Kemp WM, Sampou P, Caffrey J, Mayer M, Henriksen K, Boynton WR (1990) Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnol Oceanogr 35(7):1545–1563Google Scholar
  49. Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G et al (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29CrossRefGoogle Scholar
  50. Klump JV, Martens CS (1987) Biogeochemical cycling in an organic-rich coastal marine basin. 5. Sedimentary nitrogen and phosphorus budgets based upon kinetic models mass balaces, and the stoichiometry of nutrient regeneration. Geochim Cosmochim Acta 51(5):1161–1173CrossRefGoogle Scholar
  51. Kuypers MM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422(6932):608–611CrossRefGoogle Scholar
  52. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R et al (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA 102(18):6478–6483CrossRefGoogle Scholar
  53. Laursen AE, Seitzinger SP (2002) The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments. Cont Shelf Res 22:1397–1416CrossRefGoogle Scholar
  54. McCarthy MJ, Gardner WS, Lavrentyev PJ, Moats KM, Jochem FJ, Klarer DM (2007) Effects of hydrological flow regime on sediment-water interface and water column nitrogen dynamics in a Great Lakes coastal wetland (Old Woman Creek, Lake Erie). J Great Lakes Res 33(1):219CrossRefGoogle Scholar
  55. McCarthy M, McNeal K, Morse J, Gardner W (2008) Bottom-water hypoxia effects on sediment-water interface nitrogen transformations in a seasonally hypoxic, shallow bay (Corpus Christi Bay, Texas, USA). Estuar Coasts 31:521–531. doi:  10.1007/s12237-008-9041-z Google Scholar
  56. Meissner KJ, Galbraith ED, Völker C (2005) Denitrification under glacial and interglacial conditions: A physical approach. Paleoceanography 20(3):PA3001CrossRefGoogle Scholar
  57. Middelburg JJ, Soetaert K, Herman PMJ, Heip C (1996) Denitrification in marine sediments: a model study. Global Biogeochem Cyc 10:661–673CrossRefGoogle Scholar
  58. Middelburg JJ, Soetaert K, Herman PMJ (1997) Empirical relationships for use in global diagenetic models. Deep-Sea Res I 44(2):327–344CrossRefGoogle Scholar
  59. Moore JK, Doney SC (2007) Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Biogeochemical Cycles 21. doi: 10.1029/2006GB002762
  60. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–183CrossRefGoogle Scholar
  61. Naqvi SW, Jayakumar DA, Narvekar PV, Naik H, Sarma VV, D’Souza W et al (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408(6810):346–349CrossRefGoogle Scholar
  62. Oviatt CA, Keller AA, Sampou PA, Beatty LL (1986) Patterns of productivity during eutrophication: a mesocosm experiment. Mar Ecol Prog Ser 28(1–2):69–80CrossRefGoogle Scholar
  63. Paerl H, Zehr J (2000) Marine nitrogen fixation. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, Wilmington, pp 387–426Google Scholar
  64. Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51:1194–1199Google Scholar
  65. Rao AMF, McCarthy MJ, Gardner WS, Jahnke RA (2007) Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: rates of carbon and nitrogen cycling from sediment column experiments. Cont Shelf Res 27(13):1801–1819CrossRefGoogle Scholar
  66. Richards FA, Cline JD, Broenkow WW, Atkinson LP (1965) Some consequences of the decomposition of organic matter in Lake Nitinat, an Anoxic Fjord. Limnol Oceanogr 10:185–201Google Scholar
  67. Risgaard-Petersen N, Meyer RL, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S et al (2004) Anaerobic ammonium oxidation in an estuarine sediment. Aquat Microb Ecol 36(3):293–304CrossRefGoogle Scholar
  68. Ruelland D, Billen G, Brunstein D, Garnier J (2007) SENEQUE: a multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Sci Total Environ 375:257–273CrossRefGoogle Scholar
  69. Seitzinger S, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B et al (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090CrossRefGoogle Scholar
  70. Soetaert K, Herman PMJ, Middelburg JJ (1996a) Dynamic response of deep-sea sediments to seasonal variations: a model. Limnol Oceanogr 41(8):1651–1668Google Scholar
  71. Soetaert K, Herman PMJ, Middelburg JJ (1996b) A model of early diagenetic processes from the shelf to abyssal depths. Geochim Cosmochim Acta 60(6):1019–1040CrossRefGoogle Scholar
  72. Soetaert K, Middelburg JJ, Herman PMJ, Buis K (2000) On the coupling of benthic and pelagic biogeochemical models. Earth-Sci Rev 51:173–201CrossRefGoogle Scholar
  73. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68(3):1312–1318CrossRefGoogle Scholar
  74. Thibodeaux LJ, Boyle JD (1987) Bedform-generated convective transport in bottom sediment. Nature 325(6102):341–343CrossRefGoogle Scholar
  75. Thouvenot M, Billen G, Garnier J (2007) Modelling nutrient exchange at the sediment-water interface of river systems. J Hydrology 341(1–2):55–78CrossRefGoogle Scholar
  76. Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the thames estuary, United Kingdom. Appl Environ Microbiol 69(11):6447–6454CrossRefGoogle Scholar
  77. Trimmer M, Nicholls JC, Morley N, Davies CA, Aldridge J (2005) Biphasic behavior of anammox regulated by nitrite and nitrate in an estuarine sediment. Appl Environ Microbiol 71(4):1923–1930CrossRefGoogle Scholar
  78. Vanderborght JP, Wollast R, Billen G (1977a) Kinetic models of diagenesis in disturbed sediments. Part 1. Mass transfer properties and silica diagenesis. Limnol Oceanogr 22(5):787–793CrossRefGoogle Scholar
  79. Vanderborght JP, Wollast R, Billen G (1977b) Kinetic models of diagenesis in disturbed sediments. Part 2. Nitrogen diagenesis. Limnol Oceanogr 22(5):794–803Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Katja Fennel
    • 1
    Email author
  • Damian Brady
    • 2
  • Dominic DiToro
    • 2
  • Robinson W. Fulweiler
    • 3
  • Wayne S. Gardner
    • 4
  • Anne Giblin
    • 5
  • Mark J. McCarthy
    • 4
    • 6
  • Alexandra Rao
    • 7
  • Sybil Seitzinger
    • 8
  • Marie Thouvenot-Korppoo
    • 9
  • Craig Tobias
    • 10
  1. 1.Department of OceanographyDalhousie UniversityHalifaxCanada
  2. 2.University of DelawareNewarkUSA
  3. 3.Louisiana State UniversityBaton RougeUSA
  4. 4.Marine Science InstituteThe University of Texas at Austin PortAransasUSA
  5. 5.Marine Biological Laboratory Ecosystems CenterWoods HoleUSA
  6. 6.Département Sciences BiologiquesUniversité du Québec à MontréalMontréalQCCanada
  7. 7.Woods Hole Oceanographic InstitutionWoods HoleUSA
  8. 8.Institute of Marine and Coastal Sciences, Rutgers/NOAA CMER ProgramRutgers UniversityNew BrunswickUSA
  9. 9.Water Resources EngineeringHelsinki University of TechnologyHelsinkiFinland
  10. 10.University of North Carolina WilmingtonWilmingtonUSA

Personalised recommendations