Biogeochemistry

, Volume 95, Issue 1, pp 23–35 | Cite as

The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest

  • David A. Lipson
  • Russell K. Monson
  • Steven K. Schmidt
  • Michael N. Weintraub
Article

Abstract

Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.

Keywords

Abies lasiocarpa Burkholderia Janthinobacterium Pinus contorta Picea engelmanii Variovorax 

Abbreviations

SIGR

Substrate induced growth response

SIR

Substrate induced respiration

Rh

Heterotrophic respiration

Rs

Soil respiration

Re

Ecosystem respiration

References

  1. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221. doi:10.1016/0038-0717(78)90099-8 CrossRefGoogle Scholar
  2. Ausebel FM (1994) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  3. Black TA, Chen WJ, Barr AG, Arain MA, Chen Z, Nesic Z, Hogg EH, Neumann HH, Yang PC (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys Res Lett 27:1271–1274. doi:10.1029/1999GL011234 CrossRefGoogle Scholar
  4. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  5. Campbell GS, Norman JS (1998) Introduction to environmental biophysics. Springer, New YorkGoogle Scholar
  6. Colores GM, Schmidt SK, Fisk MC (1996) Estimating the biomass of microbial functional groups using rates of growth-related soil respiration. Soil Biol Biochem 28:1569–1577. doi:10.1016/S0038-0717(96)00253-2 CrossRefGoogle Scholar
  7. Costa E, Perez J, Kreft JU (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14:213–219. doi:10.1016/j.tim.2006.03.006 CrossRefGoogle Scholar
  8. Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Change Biol 11:167–181. doi:10.1111/j.1365-2486.2004.00878.x CrossRefGoogle Scholar
  9. Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gillooly JF (2003) Scaling metabolism from organisms to ecosystems. Nature 423:639–642. doi:10.1038/nature01671 CrossRefGoogle Scholar
  10. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861. doi:10.1038/35009076 CrossRefGoogle Scholar
  11. Goulden ML et al (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–216. doi:10.1126/science.279.5348.214 CrossRefGoogle Scholar
  12. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi:10.1023/A:1006244819642 CrossRefGoogle Scholar
  13. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774Google Scholar
  14. Kreft JU (2004) Biofilms promote altruism. Microbiology 150:2751–2760. doi:10.1099/mic.0.26829-0 CrossRefGoogle Scholar
  15. Kreft JU, Bonhoeffer S (2005) The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology 151:637–641. doi:10.1099/mic.0.27415-0 CrossRefGoogle Scholar
  16. Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427. doi:10.1111/j.1574-6941.2006.00240.x CrossRefGoogle Scholar
  17. Lipson DA, Monson RK (1998) Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia 113:406–414. doi:10.1007/s004420050393 CrossRefGoogle Scholar
  18. Lipson DA, Schmidt SK (2004) Seasonal changes in an alpine soil bacterial community. Appl Environ Microbiol 70:2867–2879. doi:10.1128/AEM.70.5.2867-2879.2004 CrossRefGoogle Scholar
  19. Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and N availability in an alpine ecosystem. Ecology 80:1623–1631Google Scholar
  20. Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline of microbial biomass in an alpine soil. Soil Biol Biochem 32:441–448. doi:10.1016/S0038-0717(99)00068-1 CrossRefGoogle Scholar
  21. Lipson DA, Schadt CW, Monson RK, Schmidt SK (2002) Changes in microbial community structure and function following snow melt in an alpine soil. Microb Ecol 43:307–314. doi:10.1007/s00248-001-1057-x CrossRefGoogle Scholar
  22. Lipson DA, Wilson RF, Oechel WC (2005) Effects of elevated atmospheric CO2 on soil microbial biomass, activity and diversity in a chaparral ecosystem. Appl Environ Microbiol 71:8573–8580. doi:10.1128/AEM.71.12.8573-8580.2005 CrossRefGoogle Scholar
  23. Luo YQ, Wan SQ, Hui DF, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625. doi:10.1038/35098065 CrossRefGoogle Scholar
  24. MacLean RC, Gudelj I (2006) Resource competition and social conflict in experimental populations of yeast. Nature 441:498–501. doi:10.1038/nature04624 CrossRefGoogle Scholar
  25. Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682. doi:10.1128/AEM.68.8.3673-3682.2002 CrossRefGoogle Scholar
  26. Meir P, Cox P, Grace J (2006) The influence of terrestrial ecosystems on climate. Trends Ecol Evol 21:254–260. doi:10.1016/j.tree.2006.03.005 CrossRefGoogle Scholar
  27. Millner PD, Mulbry WW, Reynolds SL, Patterson CA (1998) A taxon-specific oligonucleotide probe for temperate zone soil isolates of Glomus mosseae. Mycorrhiza 8:19–27. doi:10.1007/s005720050206 CrossRefGoogle Scholar
  28. Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Change Biol 8:459–478. doi:10.1046/j.1365-2486.2002.00480.x CrossRefGoogle Scholar
  29. Monson RK, Sparks JS, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146:130–147. doi:10.1007/s00442-005-0169-2 CrossRefGoogle Scholar
  30. Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA (2006a) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem Cycles 20:GB3030. doi:10.1029/2005GB002684 CrossRefGoogle Scholar
  31. Monson RK, Lipson DA, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006b) Forest soil respiration controlled by winter climate variation and microbial community composition. Nature 439:711–714. doi:10.1038/nature04555 CrossRefGoogle Scholar
  32. Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in western north America. Bull Am Meteorol Soc 86:39. doi:10.1175/BAMS-86-1-39 CrossRefGoogle Scholar
  33. Pasteur L (1861) Animalcules infusoires vivant sans gaz oxygene libre et determinant des fermentations. Compt Rend Acad Sci (Paris) 52:344–347Google Scholar
  34. Pfeiffer T, Bonhoeffer S (2004) Evolution of cross-feeding in microbial populations. Am Nat 163:E126–E135. doi:10.1086/383593 CrossRefGoogle Scholar
  35. Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507. doi:10.1126/science.1058079 CrossRefGoogle Scholar
  36. Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia 151:54–68. doi:10.1007/s00442-006-0565-2 CrossRefGoogle Scholar
  37. Sakamoto K, Oba Y (1994) Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass. Biol Fertil Soils 17:39–44. doi:10.1007/BF00418670 CrossRefGoogle Scholar
  38. Schmidt SK (1992) A substrate-induced growth-response (SIGR) method for estimating the biomass of microbial functional groups in soil and aquatic systems. FEMS Microbiol Ecol 101:197–206CrossRefGoogle Scholar
  39. Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biol Biochem 35:525–534. doi:10.1016/S0038-0717(03)00007-5 CrossRefGoogle Scholar
  40. Scott-Denton LE, Rosenstiel T, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Change Biol 12:205–216. doi:10.1111/j.1365-2486.2005.01064.x CrossRefGoogle Scholar
  41. Sorokin DY, Banciu H, Loosdrecht Mv, Kuenen JG (2003) Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles 7:195–203Google Scholar
  42. Stulke J, Wolfgang H (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201. doi:10.1016/S1369-5274(99)80034-4 CrossRefGoogle Scholar
  43. Subke J-A, Inglima I, Cotrufo F (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:921–943. doi:10.1111/j.1365-2486.2006.01117.x CrossRefGoogle Scholar
  44. Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245. doi:10.1016/S1369-5274(02)00324-7 CrossRefGoogle Scholar
  45. Velicer GJ, Lenski RE (1999) Evolutionary tradeoffs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology 80:1168–1179CrossRefGoogle Scholar
  46. Zak DR, Blackwood CB, Waldrop MP (2006) A molecular dawn for biogeochemistry. Trends Ecol Evol 21:288–295. doi:10.1016/j.tree.2006.04.003 CrossRefGoogle Scholar
  47. Zobitz JM, Moore D, Sacks WJ, Monson RK, Bowling DR, Schimel DS (2008) Integration of process-based soil respiration models with whole ecosystem CO2 measurements. Ecosystems (NY, Print) 11:250–259. doi:10.1007/s10021-007-9120-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David A. Lipson
    • 1
  • Russell K. Monson
    • 2
  • Steven K. Schmidt
    • 2
  • Michael N. Weintraub
    • 3
  1. 1.Department of BiologySan Diego State UniversitySan DiegoUSA
  2. 2.University of ColoradoBoulderUSA
  3. 3.University of ToledoToledoUSA

Personalised recommendations