Skip to main content

Effect of land use on the biogeochemistry of dissolved nutrients and suspended and sedimentary organic matter in the tropical Kallada River and Ashtamudi estuary, Kerala, India

Abstract

The effect of land use on the biogeochemistry of small tropical rivers and their estuaries was studied using the Kallada River and Ashtamudi estuary located in the State of Kerala, India, as a model system. Water, suspended matter and sediments collected during the monsoon and intermonsoon periods in 2002 and 2003 were analyzed for dissolved nutrients (nitrate, nitrite, phosphate, silicate) and for phytoplankton abundance and composition, amino acid contents and stable carbon (C)) and nitrogen (N) isotope ratios. Seasonal and spatial variations of dissolved nutrients and suspended matter along the course of the river point to distinct differences in the C and N sources that are controlled by hydrology, geology and land use. Unusually low concentrations of dissolved silicate and suspended matter suggest low erosion rates of the Precambrian basement rocks and the firm lateritic soils in non-agricultural areas. Most dissolved nutrients and suspended particulate organic matter originated from fertilized agricultural soils. The biogeochemistry of sedimentary organic matter indicates that most of the Kallada River load is deposited in the upper Ashtamudi estuary, while the middle and lower parts have a stronger marine influence. The spatio-temporal variation of dissolved and particulate river fluxes clearly indicates an effect of land use and land cover on the biogeochemistry of the Kallada River. While the phosphate yield was high (6 × 103 mol km−2 year−1 or 185 kg km−2 year−1), the N yield was relatively low (10 × 103 mol km−2 year−1 or 141 kg km−2 year−1), which is unlike the situation in many other densely populated regions of tropical Asia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2008) Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River basin. Environ Sci Technol 42:822–830. doi:10.1021/es0716103

    Article  Google Scholar 

  2. APHA (1985) Standard methods for the examination of water and waste water, 16th edn. Am Public Health Assn, Washington, DC

    Google Scholar 

  3. Arbuckle KE, Downing JA (2001) The influence of watershed land use on lake N:P in a predominantly agricultural landscape. Limnol Oceanogr 46:970–975

    Google Scholar 

  4. Arunachalam K, Arunachalam A, Melkania NP (1999) Influence of soil properties on microbial populations, activity and biomass in humid subtropical mountainous ecosystems of India. Biol Fertil Soils 30:217–223. doi:10.1007/s003740050611

    Article  Google Scholar 

  5. Carneiro MER (1998) Origem, transporte e destino da materia organica no estuario do Rio Paraiba do Sul, RJ. Ph.D. thesis. Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi, Brazil

  6. Chattopadhyay S, Asa Rani L, Sangeetha PV (2005) Water quality variations as linked to landuse pattern: a case study in Chalakudy river basin, Kerala. Curr Sci 89:2163–2169

    Google Scholar 

  7. Choi W-J, Ro H-M, Hobbie EA (2003) Patterns of natural 15N in soils and plants from chemically and organically fertilized uplands. Soil Biol Biochem 35:1493–1500. doi:10.1016/S0038-0717(03)00246-3

    Article  Google Scholar 

  8. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (UK)/New York

  9. Degens ET, Kempe S, Richey JE (1991) Summary: biogeochemistry of major world rivers. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. SCOPE 42. Wiley, Chichester, pp 323–347

  10. Drever JI (1997) The geochemistry of natural waters. Prentice Hall, Upper Saddle River

    Google Scholar 

  11. Dudgeon D (2000) Going with the flow: large-scale hydrological changes and prospects for riverine biodiversity in tropical Asia. BioScience 50:793–806

    Google Scholar 

  12. Eghball B (2002) Soil properties as influenced by phosphorus- and nitrogen-based manure and compost applications. Agron J 94:128–135

    Google Scholar 

  13. Eghball B, Power JF, Gilley JE, Doran JW (1997) Nutrient, carbon and mass loss of beef cattle feedlot manure during composting. J Environ Qual 26:189–193

    Article  Google Scholar 

  14. Elvidge CD, Baugh KE, Kihn EA, Kroehl HW, Davis ER (1997) Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm Eng Remote Sensing 63:727–734

    Google Scholar 

  15. Filoso S, Martinelli LA, Williams MR, Lara LB, Krusche A, Ballester MV et al (2003) Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry 65:275–294. doi:10.1023/A:1026259929269

    Article  Google Scholar 

  16. Fischer G (1991) Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Mar Chem 35:581–596

    Article  Google Scholar 

  17. Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. doi:10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  18. Global Environmental Monitoring System (2000) Available at: www.gemswater.org. Accessed 27 June 2007

  19. Goolsby DA, Battaglin WA, Aulenbach BT, Hooper RP (2000) Nitrogen flux and sources in the Mississippi River basin. Sci Total Environ 248:75–86. doi:10.1016/S0048-9697(99)00532-X

    Article  Google Scholar 

  20. Government of India (2006) Union budget & economic survey. Available at: http://indiabudget.nic.in. Accessed: 16 Feb 2006

  21. Grasshoff K, Kremling K, Ehrhardt M (eds) (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  22. Henkel S (2006) Biogeochemical studies of small mountainous rivers in South Kerala, India. Diploma thesis. University of Bremen, Bremen

  23. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  24. Holmes ME, Müller PJ, Schneider RR, Segl M, Wefer G (1998) Spatial variations in euphotic zone nitrate utilization based on δ15N in surface sediments. Geo-Mar Lett 18:58–65. doi:10.1007/s003670050052

    Article  Google Scholar 

  25. Ittekkot V, Zhang S (1989) Pattern of particulate nitrogen transport in world rivers. Global Biogeochem Cycles 3:383–391. doi:10.1029/GB003i004p00383

    Article  Google Scholar 

  26. Ittekkot V, Humborg C, Schäfer P (2000) Hydrological alterations and marine biogeochemistry. A silicate issue. BioScience 50:776–782

    Google Scholar 

  27. Jennerjahn TC, Ittekkot V (1997) Organic matter in sediments in the mangrove areas and adjacent continental margins of Brazil: I. Amino acids and hexosamines. Oceanol Acta 20:359–369

    Google Scholar 

  28. Jennerjahn TC, Ittekkot V (1999) Changes in organic matter from surface waters to continental slope sediments off the São Francisco River, eastern Brazil. Mar Geol 161:129–140. doi:10.1016/S0025-3227(99)00045-6

    Article  Google Scholar 

  29. Jennerjahn TC, Ittekkot V, Carvalho CEV, Ovalle ARC, Rezende CE, Erlenkeuser H (1999) Temporal variability of amino acid, hexosamine and carbohydrate fluxes on the eastern Brazilian continental margin related to discharge of the São Francisco River, Brazil. Geo-Mar Lett 19:202–208. doi:10.1007/s003670050110

    Article  Google Scholar 

  30. Jennerjahn TC, Ittekkot V, Klöpper S, Seno Adi, Sutopo Purwo Nugroho, Nana Sudiana, Anyuta Yusmal, Prihartanto, Gaye-Haake B (2004) Biogeochemistry of a tropical river affected by human activities in its catchment: Brantas River estuary and coastal waters of Madura Strait, Java, Indonesia. Estuar Coast Shelf Sci 60:503–514. doi:10.1016/j.ecss.2004.02.008

  31. Jennerjahn TC, Knoppers BA, Souza WFL, Brunskill GJ, Silva EIL (2006) Factors controlling dissolved silica in tropical rivers. In: Ittekkot V, Unger D, Humborg C, Tac An N (eds) The silicon cycle. Human perturbations and impacts on aquatic systems. SCOPE 66. Island Press, Washington, DC, pp 29–51

  32. Lacerda LD, Rezende CE, Martinelli LA, Ovalle ARC, Mozeto A, Nogueira F et al (1986) Composição isotópica de carbono em componentes de um ecossistema de manguezal na Baía de Sepetiba, Rio de Janeiro. Cienc Cult 38:1714–1717

    Google Scholar 

  33. Lee C, Cronin C (1982) The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J Mar Res 40:227–251

    Google Scholar 

  34. Liu KK, Kaplan IR (1989) The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnol Oceanogr 34:820–830

    Article  Google Scholar 

  35. Matsuura Y, Wada E (1994) Carbon and nitrogen stable isotope ratios in marine organic matters of the coastal ecosystem in Ubatuba, southern Brazil. Cienc Cult 46:141–146

    Google Scholar 

  36. Meybeck M (1993) C, N, P and S in rivers: from sources to global inputs. In: Wollast R, Mackenzie FT, Chou L (eds) Interaction of C, N, P and S biogeochemical cycles and global change. NATO ASI Series 14, pp 163–193

  37. Middelburg JJ, Herman PMJ (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127–147. doi:10.1016/j.marchem.2006.02.007

    Article  Google Scholar 

  38. Middelburg JJ, Nieuwenhuize J (2001) Nitrogen isotope tracing of dissolved inorganic nitrogen behaviour in tidal estuaries. Estuar Coast Shelf Sci 53:385–391. doi:10.1006/ecss.2001.0805

    Article  Google Scholar 

  39. Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Google Scholar 

  40. Milliman JD, Farnsworth KL, Albertin CS (1999) Flux and fate of fluvial sediments leaving large islands in the East Indies. J Sea Res 41:97–107. doi:10.1016/S1385-1101(98)00040-9

    Article  Google Scholar 

  41. Müller PJ, Suess E, Ungerer CA (1986) Amino acids and amino sugars of surface particulate and sediment trap material from waters of the Scotia Sea. Deep-Sea Res 33:819–838. doi:10.1016/0198-0149(86)90090-7

    Article  Google Scholar 

  42. Muraleedharan Nair MN, Prakash TN, Kurian NP, Rajith K (2001) Hydrography and sediment chemistry of the Ashtamudi estuary. In: Black K, Baba M (eds) Developing a management plan for Ashtamudi estuary, Kollam, India. Centre for Earth Science Studies, Thiruvananthapuram

    Google Scholar 

  43. Mwashote BM, Jumba IO (2002) Quantitative aspects of inorganic nutrient fluxes in the Gazi Bay (Kenya): implications for coastal ecosystems. Mar Pollut Bull 44:1194–1205. doi:10.1016/S0025-326X(02)00176-5

    Article  Google Scholar 

  44. Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408. doi:10.1126/science.1107887

    Article  Google Scholar 

  45. Office of the Registrar General (2003) Census of India 2001. Available at: www.censusindia.net. Accessed 22 Feb 2006

  46. Ostrom NE, Knoke KE, Hedin LO, Robertson GP, Smucker AJM (1998) Temporal trends in nitrogen isotope values of nitrate leaching from an agricultural soil. Chem Geol 146:219–227. doi:10.1016/S0009-2541(98)00012-6

    Article  Google Scholar 

  47. Providoli I, Bugmann H, Siegwolf R, Buchmann N, Schleppi P (2005) Flow of deposited inorganic N in two Gleysol-dominated mountain catchments traced with 15NO3 and 15NH4 +. Biogeochem 76:453–475. doi:10.1007/s10533-005-8124-1

    Article  Google Scholar 

  48. Rabalais NN, Turner RE, Justic D, Dortch Q, Wiseman Jr WJ, Sen Gupta BK (2000) Gulf of Mexico biological system responses to nutrient changes in the Mississippi River. In: Hobbie J (ed) Estuarine science: a synthetic approach to research and practice. Island Press, Washington

    Google Scholar 

  49. Raychaudhuri SP (1980) The occurrence, distribution, classification and management of laterite and lateritic soils. Cah Orstom (Sci Hum) 18:249–252

    Google Scholar 

  50. Reich PB, Oleksyn K (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11,001–11006. doi:10.1073/pnas.0403588101

    Google Scholar 

  51. Rosenberg DM, McCully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations: introduction. BioScience 50(9):746–751

  52. Roth M, Hampai A (1973) Column chromatography of amino acids with fluorescence detection. J Chromatogr 83:353–356. doi:10.1016/S0021-9673(00)97051-1

    Article  Google Scholar 

  53. Sadras VO (2006) The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crops Res 95:13–29. doi:10.1016/j.fcr.2005.01.020

    Article  Google Scholar 

  54. Schäfer P, Ittekkot V (1993) Seasonal variability of 15N in settling particles in the Arabian Sea and its paleogeochemical significance. Naturwissenschaften 80:511–513. doi:10.1007/BF01140806

    Article  Google Scholar 

  55. Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63:35–51. doi:10.1023/A:1023362923881

    Article  Google Scholar 

  56. Silva EIL, Jennerjahn TC, Ittekkot V (2005) Nutrient fluxes into coastal waters via Sri Lankan rivers: a comparison with other Asian rivers. Int J Ecol Environ Sci 31:213–221

    Google Scholar 

  57. Smith SV, Swaney DP, Talaue-McManus L, Bartley JD, Sandhei PT et al (2003) Humans, hydrology, and the distribution of organic nutrient loading to the ocean. BioScience 53:235–245

    Google Scholar 

  58. Soman K (1982) Genesis and geomorphic significance of laterite in parts of Trivandrum and Quilon districts. Kerala Tech Rep 19. CESS, Trivandrum

  59. Soman K (1999) Physical setting and natural resource potential of the Western Ghats, India. SCOPE 82. Mitt Geol-Paläont Inst Univ Hamburg, Hamburg, pp 87–98

  60. Soman K (2002) Geology of Kerala. Geological Society of India Publication, Bangalore

    Google Scholar 

  61. Soman K, Slukin AD (1987) Lateritization cycles and their relation to the formation and quality of kaolin deposits in South Kerala, India. Chem Geol 60:273–280. doi:10.1016/0009-2541(87)90132-X

    Article  Google Scholar 

  62. Sowden FJ, Chen Y, Schnitzer M (1977) The nitrogen distribution in soils formed under widely differing climatic conditions. Geochim Cosmochim Acta 41:1524–1526. doi:10.1016/0016-7037(77)90257-5

    Article  Google Scholar 

  63. Stewart GR, Aidar MPM, Joly CA, Schmidt S (2002) Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131:468–472. doi:10.1007/s00442-002-0906-8

    Article  Google Scholar 

  64. Suthhof A, Jennerjahn TC, Schäfer P, Ittekkot V (2000) Nature of organic matter in surface sediments from the Pakistan continental margin and the deep Arabian Sea: amino acids. Deep Sea Res Part II Top Stud Oceanogr 47:329–351. doi:10.1016/S0967-0645(99)00109-5

    Article  Google Scholar 

  65. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380. doi:10.1126/science.1109454

    Article  Google Scholar 

  66. The World Commission on Dams (2000) Dams and development—a new framework for decision-making. Earthscan Publ, London

    Google Scholar 

  67. Turner RE, Rabalais NN (1991) Changes in Mississippi River water quality this century. Bioscience 41:140–147. doi:10.2307/1311453

    Article  Google Scholar 

  68. Utah Climate Center (2006) Climate database. Available at: http://climate.usurf.usu.edu/. Accessed 16 Feb 2006

  69. Verardo DJ, Froelich PN, McIntyre A (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Res 37:157–165. doi:10.1016/0198-0149(90)90034-S

    Article  Google Scholar 

  70. Voss M, Dippner JW, Montoya JP (2001) Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean. Deep Sea Res Part I Oceanogr Res Pap 48:1905–1921. doi:10.1016/S0967-0637(00)00110-2

    Article  Google Scholar 

  71. Voss M, Deutsch B, Elmgren R, Humborg C, Kuuppo P, Pastuszak M et al (2006) River biogeochemistry and source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeoscience 3:663–676

    Google Scholar 

  72. Wada E, Hattori A (1990) Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, Boca Raton

    Google Scholar 

  73. Weatherbase (2006) Weather records and averages. Available at: http://www.weatherbase.com. Accessed 20 Feb 2006

  74. Westerhausen L, Poynter J, Eglinton G, Erlenkeuser H, Sarnthein M (1993) Marine and terrigenous origin of organic matter in modern sediments of the equatorial East Atlantic: the δ13C and molecular record. Deep-Sea Res 40:1087–1121. doi:10.1016/0967-0637(93)90091-G

    Article  Google Scholar 

  75. Wittkuhn D (1999) Dissolved and particulate organic matter in the rivers of Kerala, India. SCOPE 82. Mitt Geol-Paläont Inst Univ Hamburg, Hamburg, pp 235–243

  76. World Resources Institute (2005) EarthTrends—environmental information. Available at: http://earthtrends.wri.org. Accessed 02 Nov 2007

Download references

Acknowledgments

We thank Dr. P.P. Ouseph, Dr. Mahamaya Chattopadhyay and L. Thushara for help during the course of the study, Susann Henkel for helpful comments and Dorothee Dasbach, Matthias Birkicht and Arno Cremer for laboratory work. We appreciate the constructive comments of Anne E. Hershey and William B. Bowden, which helped to improve the quality of the paper. Financial support by the International Bureau of the German Federal Ministry of Education and Research (Grant No. IND 03/021) and the Kerala State Council on Science, Technology and Environment (Project “Terrestrial nutrients loads and coastal productivity: a case study in South Kerala”) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. C. Jennerjahn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jennerjahn, T.C., Soman, K., Ittekkot, V. et al. Effect of land use on the biogeochemistry of dissolved nutrients and suspended and sedimentary organic matter in the tropical Kallada River and Ashtamudi estuary, Kerala, India. Biogeochemistry 90, 29–47 (2008). https://doi.org/10.1007/s10533-008-9228-1

Download citation

Keywords

  • Amino acids
  • Biogeochemistry
  • Land use
  • Nutrients
  • Rivers
  • Stable isotopes