Skip to main content

Advertisement

Log in

Composition of organic matter in sandy relict and cultivated heathlands as examined by pyrolysis-field ionization MS

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Unusually high SOC levels have been reported for sandy cropland soils in North-Western Europe. A potential link with their general heathland land-use history was investigated by comparing two soil pairs of relict heathland and cultivated former heathland in the Belgian sandy region. A sequential chemical fractionation yielded similar sizes in corresponding SOM fractions between the heathland and cropland soils (i.e. NaOCl resistant: 12.3–15.0 g C kg−1 and NaOCl + HF resistant: 2.6–5.3 g C kg−1). Higher amounts of clay sized N in the cropland plots can be attributed to N additions from mineral fertilizers and animal manure. Temperature resolved Pyrolysis Field Ionization Mass Spectroscopy analysis showed that the composition of both relict heathland and cultivated soils was surprisingly similar, in spite of over 60 years of intense cropland management. The mass spectra of SOM in both heathland-cropland soil pairs investigated was dominated by signals from lipids, alkylaromatics and sterols. The accumulation of this SOM rich in aliphatics was logically linked to the high input of lipids, long-chain aliphatics and sterols from heathland vegetation and the low soil pH and microbial activity. Based on the relatively high OC surface loadings of HF-extractable OM (13–44 mg C m−2 Fe and 1.2–2.3 mg C m−2 clay), direct organo-mineral bonds between OM and Fe-oxides or clay minerals seem to be only partly involved as a stabilization mechanism in these soils. The distinct bimodal shape of the thermograms indicates that OM-crosslinking could furthermore contribute substantially to SOM stabilization in these soils. This study therefore corroborates the previously proposed view that lipids may be bound in networks of alkylaromatics, the structural building blocks of OM macromolecules. We hypothesize that such binding is able to explain the measured retention of these OM components, even under several decades of cropland management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscopy

MOC and MN:

Mineral protected organic C and N

OC:

Organic carbon

Py-FIMS:

Pyrolysis Field Ionization Mass Spectroscopy

ROC and RN:

Recalcitrant organic C and N

SOM:

Soil organic matter

References

  • Amelung W (1997) Zum Klimaeinfluß auf die organische Substanz nordamerikanischer Prärieböden. Bayreuther Bodenkundlicher Ber 53:1–140 (in German)

    Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Agronomy, vol 9. American Society of Agronomy, Madison, pp 831–871

    Google Scholar 

  • Anderson JM, Heterington SL (1999) Temperature, nitrogen availability and mixture effects on the decomposition of heather [Calluna vulgaris (L.) Hull] and bracken [Pteridium aquilinum (L.) Kuhn] litters. Funct Ecol 13:116–124. doi:10.1046/j.1365-2435.1999.00014.x

    Article  Google Scholar 

  • Beyer L (1996) Soil organic matter composition of spodic horizons in Podzols of the Northwest German lower plain. Sci Total Environ 181:167–180. doi:10.1016/0048-9697(95)05007-8

    Article  Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1987) Methods for Chemical Analysis of Soils. New Zealand Soil Bureau Scientific Report 80. NZ Soil Bureau, Department of Scientific and Industrial Research, New Zealand

  • Bull ID, van Bergen PF, Nott CJ, Poulton PR, Evershed RP (2000) Organic geochemical studies of soils from the Rothamsted classical experiments-V. The fate of lipids in different long-term experiments. Org Geochem 31:389–408. doi:10.1016/S0146-6380(00)00008-5

    Article  Google Scholar 

  • Buurman P, Schellekens J, Fritze H, Nierop KGJ (2007) Selective depletion of organic matter in mottled podzol horizons. Soil Biol Biochem 39:607–621. doi:10.1016/j.soilbio.2006.09.012

    Article  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582. doi:10.2307/2261479

    Article  Google Scholar 

  • De Neve S, Pannier J, Hofman G (1996) Temperature effects on C- and N-mineralization from vegetable crop residues. Plant Soil 181:25–30. doi:10.1007/BF00011288

    Article  Google Scholar 

  • Dinel H, Schnitzer M, Mehuys GR (1990) Soil lipids: Origin, nature, content, decomposition and effect on soil physical properties. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York Basel, pp 397–429

    Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2005a) Stabilization of soil organic matter isolated via oxidative degradation. Org Geochem 36:1567–1575. doi:10.1016/j.orggeochem.2005.06.010

    Article  Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2005b) Organo-mineral associations in sandy forest soils: importance of specific surface area, iron oxide and micropores. Eur J Soil Sci 56:753–763

    Google Scholar 

  • Gerin PA, Genet MJ, Herbillon AJ, Delvaux B (2003) Surface analysis of soil material by X-ray photoelectron spectroscopy. Eur J Soil Sci 54:589–603. doi:10.1046/j.1365-2389.2003.00537.x

    Article  Google Scholar 

  • Gregorich EG, Monreal CM, Schnitzer M, Schulten H-R (1997) Transformation of plant residues into soil organic matter: chemical characterization of plant tissue, isolated soil fractions, and whole soils. Soil Sci 161:680–693. doi:10.1097/00010694-199610000-00005

    Article  Google Scholar 

  • Huang Y, Stankiewicz BA, Eglinton G, Snape CE, Evans B, Latter PM et al (1998) Monitoring biomacromolecular degradation of Calluna vulgaris in a 23 year field experiment using solid state 13C-NMR and Pyrolysis-GC/MS. Soil Biol Biochem 30:1517–1528. doi:10.1016/S0038-0717(97)00234-4

    Article  Google Scholar 

  • Iason GR, Hester AJ (1993) The response of heather (Calluna vulgaris) to shade and nutrients—predictions of the carbon-nutrient balance hypothesis. J Ecol 81:75–80. doi:10.2307/2261225

    Article  Google Scholar 

  • Jandl G, Leinweber P, Schulten H-R, Eusterhues K (2004) The concentrations of fatty acids in organo-mineral particle-size fractions of a Chernozem. Eur J Soil Sci 55:459–469. doi:10.1111/j.1365-2389.2004.00623.x

    Article  Google Scholar 

  • Jandl G, Leinweber P, Schulten H-R, Ekschmitt K (2005) Contribution of primary organic matter to the fatty acid pool in agricultural soils. Soil Biol Biochem 37:1033–1041. doi:10.1016/j.soilbio.2004.10.018

    Article  Google Scholar 

  • Jandl G, Leinweber P, Schulten H-R (2006) Origin and fate of soil lipids in a Phaeozem under rye and maize monoculture in Central Germany. Biol Fertil Soils 43:321–332. doi:10.1007/s00374-006-0109-2

    Article  Google Scholar 

  • Kahle M, Kleber M, Torn MS, Jahn R (2003) Carbon storage in coarse and fine clay fractions of illitic soils. Soil Sci Am J 67:1732–1739

    Google Scholar 

  • Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118. doi:10.1016/S0038-0717(02)00242-0

    Article  Google Scholar 

  • Kiem R, Knicker H, Kögel-Knabner I (2002) Refractory organic carbon in particle-size fractions of arable soils I: distribution of refractory carbon between the size fractions. Org Geochem 33:1683–1697. doi:10.1016/S0146-6380(02)00113-4

    Article  Google Scholar 

  • Kristensen HL, McCarty GW (1999) Mineralization and immobilization of nitrogen in heath soil under intact Calluna, after heather beetle infestation and nitrogen fertilization. Appl Soil Ecol 13:187–198. doi:10.1016/S0929-1393(99)00036-0

    Article  Google Scholar 

  • Leinweber P (1995) Organische Substanzen in Partikelgrößenfraktionen: Zusammensetzung, Dynamik und Einfluß auf Bodeneigenschaften. Vechtaer Druckerei und Verlag, Vechta

    Google Scholar 

  • Leinweber P, Schulten H-R (1995) Composition, stability and turnover of soil organic matter: investigations by off-line pyrolysis and direct pyrolysis-mass spectrometry. J Anal Appl Pyrol 32:91–110. doi:10.1016/0165-2370(94)00832-L

    Article  Google Scholar 

  • Leinweber P, Schulten H-R (1999) Advances in analytical pyrolysis of soil organic matter. J Anal Appl Pyrol 47:165–189

    Google Scholar 

  • Leinweber P, Schulten H-R, Körschens M (1994) Seasonal-variations of soil organic matter in a long-term agricultural experiment. Plant Soil 160:225–235. doi:10.1007/BF00010148

    Article  Google Scholar 

  • Leinweber P, Jandl G, Eckhardt K-U, Schlichting A, Hofman D, Schulten H-R (2008) Analytical pyrolysis and soft ionization mass spectrometry. In: Huang PM, Senesi N (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. IUPAC Book Series “Biophysico-chemical processes in environmental systems. Part II “Analytical methods for investigation of nonliving organic matter”. (in press)

  • Mayer LM, Xing B (2001) Organic matter-surface area relationships in acid soils. Soil Sci Am J 65:250–258

    Google Scholar 

  • Mayer LM, Schick LL, Hardy KR, Wagal R, McCarthy J (2004) Organic matter in small mesopores in sediments and soils. Geochim Cosmochim Acta 68:3863–3872. doi:10.1016/j.gca.2004.03.019

    Article  Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochem 77:25–56. doi:10.1007/s10533-005-0712-6

    Article  Google Scholar 

  • Nierop KGJ, van Lagen B, Buurman P (2001) Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma 100:1–24. doi:10.1016/S0016-7061(00)00078-1

    Article  Google Scholar 

  • Piessens K (2006) Spatial and temporal patterns in the plant community composition of fragmented heathlands. PhD thesis, Catholic University of Leuven, Leuven

  • Plante AF, Pernes M, Chenu C (2005) Changes in clay-associated organic matter quality in a C-depletion sequence as measured by differential thermal analyses. Geoderma 129:186–199. doi:10.1016/j.geoderma.2004.12.043

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu JN (1997) C-13 nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613. doi:10.1139/b97-872

    Article  Google Scholar 

  • Quénéa K, Derenne S, Largeau C, Rumpel C, Mariotti A (2004) Variation in lipid relative abundance and composition among different particle size fractions of a forest soil. Org Geochem 35:1355–1370

    Google Scholar 

  • Quénéa K, Derenne S, González-Villa FJ, González-Pérez JA, Mariotti A, Largeau C (2006a) Double-shot pyrolysis of the non-hydrolysable organic fraction isolated from a sandy forest soil (Landes de Gascogne, South-West France) Comparison with classical Curie point pyrolysis. J Anal Appl Pyrol 76:271–279. doi:10.1016/j.jaap. 2005.12.007

    Article  Google Scholar 

  • Quénéa K, Largeau C, Derenne S, Spaccini R, Bardoux G, Mariotti R (2006b) Molecular and isotopic study of lipids in particle size fractions of a sandy cultivated soil (Cestas cultivationsequence, southwest France): Sources, degradation, and comparison with Cestas forest soil. Org Geochem 37:20–44. doi:10.1016/j.orggeochem.2005.08.021

    Article  Google Scholar 

  • Rumpel C, Eusterhues K, Kögel-Knabner I (2004) Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol Biochem 36:177–190. doi:10.1016/j.soilbio.2003.09.005

    Article  Google Scholar 

  • Schnitzer M, Schulten H-R (1992) The analysis of soil organic matter by pyrolysis field ionization mass spectrometry. Soil Sci Am J 56:1811–1817

    Google Scholar 

  • Schnitzer M, McArthur DFE, Schulten H-R, Kozak LM, Huang PM (2006) Long-term cultivation effects on the quantity and quality of organic matter in selected Canadian prairie soils. Geoderma 130:141–156. doi:10.1016/j.geoderma.2005.01.021

    Article  Google Scholar 

  • Schulten H-R (1993) Analytical pyrolysis of humic substances and soils - geochemical, agricultural and ecological consequences. J Anal Appl Pyrol 25:97-122

    Article  Google Scholar 

  • Schulten H-R, Leinweber P (1991) Influence of long-term fertilization of farmyard manure on soil organic matter characteristics of particle size fractions. Biol Fertil Soils 12:81–88. doi:10.1007/BF00341480

    Article  Google Scholar 

  • Schulten H-R, Leinweber P (1995) Dithionite-citrate-bicarbonate-extractable organic matter in particle size fractions of a Haplaquoll. Soil Sci Am J 59:1019–1027

    Google Scholar 

  • Schulten H-R, Leinweber P (1996) Characterization of humic and soil particles by analytical pyrolysis and computer modeling. J Anal Appl Pyrol 38:1–53. doi:10.1016/S0165-2370(96)00954-0

    Article  Google Scholar 

  • Schulten H-R, Leinweber P (1999) Thermal stability and composition of mineral-bound organic matter in density fractions of soil. Eur J Soil Sci 50:237–248. doi:10.1046/j.1365-2389.1999.00241.x

    Article  Google Scholar 

  • Schulten H-R, Leinweber P (2000) New insights into organic-mineral particles: composition, properties and models of molecular structure. Biol Fertil Soils 30:399–432. doi:10.1007/s003740050020

    Article  Google Scholar 

  • Schulten H-R, Schnitzer M (1990) Aliphatics in soil organic matter in fine-clay fractions. Soil Sci Am J 54:98–105

    Google Scholar 

  • Schulten H-R, Schnitzer M (1991) Supercritical carbon dioxide extraction of long-chain aliphatics from two soils. Soil Sci Am J 55:1603–1611

    Google Scholar 

  • Schulten H-R, Plage B, Schnitzer M (1991) A chemical structure for humic substances. Naturwissenschaften 78:311–312. doi:10.1007/BF01221416

    Article  Google Scholar 

  • Schulten H-R, Leinweber P, Reuter G (1992) Initial formation of soil organic matter from grass residues in a long-term experiment. Biol Fertil Soils 14:237–245. doi:10.1007/BF00395458

    Article  Google Scholar 

  • Siregar A, Kleber M, Mikutta R, Jahn R (2005) Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. Eur J Soil Sci 56:481–490. doi:10.1111/j.1365-2389.2004.00680.x

    Article  Google Scholar 

  • Sleutel S, De Neve S, Beheydt D, Li C, Hofman G (2006) Regional simulation of long-term organic carbon stock changes in cropland soils using the DNDC model: 1. Large scale model validation to a spatially explicit dataset. Soil Use Manage 22:342–351. doi:10.1111/j.1475-2743.2006.00019.x

    Article  Google Scholar 

  • Sleutel S, Kader MA, Leinweber P, D’Haene K, De Neve S (2007) Tillage management alters soil organic matter composition: a physical fractionation and pyrolysis mass spectroscopy study. Soil Sci Soc Am J 71:1620–1628. doi:10.2136/sssaj2006.0400

    Article  Google Scholar 

  • Sorge C, Müller R, Leinweber P, Schulten H-R (1993) Pyrolysis-mass spectroscopy of whole soils, soil particle size fractions, litter materials and humic substances: statistical evaluation of sample weight, residue, volatilized matter and total ion intensity. Fresenius J Anal Chem 346:697–703. doi:10.1007/BF00321275

    Article  Google Scholar 

  • Sorge C, Schnitzer M, Leinweber P, Schulten H-R (1994) Molecular-chemical characterization of organic matter in whole soil and particle-size fractions of a spodosol by pyrolysis-fiels ionization mass spectrometry. Soil Sci 158:189–203. doi:10.1097/00010694-199409000-00005

    Article  Google Scholar 

  • Springob G, Kirchmann H (2002) C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matter. Soil Biol Biochem 34:1571–1581. doi:10.1016/S0038-0717(02)00127-X

    Article  Google Scholar 

  • Springob G, Kirchmann H (2003) Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biol Biochem 35:629–632. doi:10.1016/S0038-0717(03)00052-X

    Article  Google Scholar 

  • Trinsoutrot I, Recous S, Bentz B, Linères M, Chèneby D, Nicolardot B (2000) Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Sci Am J 64:918–926

    Google Scholar 

  • Van der Wal A, Van Veen JA, Pijl AS, Summerbell RC, de Boer W (2006) Constraints on development of fungal biomass and decomposition processes during restoration of arable sandy soils. Soil Biol Biochem 38:2890–2902. doi:10.1016/j.soilbio.2006.04.046

    Article  Google Scholar 

  • Van Hove J (1969) Variation of the content of organic matter and the C/N-ratio in the surface horizons of soils in Low- and Mid-Belgium (in Dutch). Aggregaat voor het Hoger Onderwijs, Rijksuniversiteit Gent, Ghent

    Google Scholar 

  • Van Orshoven J, Maes J, Vereecken H, Feyen J, Dudal R (1988) A structural database of Belgian soil profile data. Pedologie (Gent) 38:191–206

    Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B et al (2006) Stabilisation of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi:10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  • Voroney RP, Winter JP, Beyaert RP (1993) Soil microbial biomass C and N. In: Carter MR (ed) Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton London Tokyo, pp 277–286

    Google Scholar 

  • Wang K, Xing B (2005) Structural and Sorption Characteristics of Adsorbed Humic Acid on Clay Minerals. J Environ Qual 34:342–349

    Article  Google Scholar 

  • Wiesenberg GLB, Schwarzbauer J, Schmidt MWI, Schwark L (2004) Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures. Org Geochem 35:1371–1393

    Google Scholar 

  • Wilcken H, Sorge C, Schulten H-R (1997) Molecular composition and chemometric differentiation and classification of soil organic matter in Podzol B-horizons. Geoderma 76:193–219. doi:10.1016/S0016-7061(96)00107-3

    Article  Google Scholar 

  • Yuan G, Soma M, Seyama H, Theng BKG, Lavkulich LM, Takamatsu T (1998) Assessing the surface composition of soil particles from some podzolic soils by X-ray photoelectron spectroscopy. Geoderma 86:169–181. doi:10.1016/S0016-7061(98)00049-4

    Article  Google Scholar 

Download references

Acknowledgements

S. Sleutel is working as a post-doctoral researcher for the Flemish Research Foundation (FWO). The authors wish to thank R. Beese and K.-U. Eckhardt, University of Rostock, for carrying out the Py-FIMS analyses. We gratefully acknowledge C. Verschueren, E. Kuycken and K. De Kesel for providing access to relict heathland plots in the Gulke Putten and Maldegemveldt nature reserves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Sleutel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleutel, S., Leinweber, P., Begum, S.A. et al. Composition of organic matter in sandy relict and cultivated heathlands as examined by pyrolysis-field ionization MS. Biogeochemistry 89, 253–271 (2008). https://doi.org/10.1007/s10533-008-9217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9217-4

Keywords

Navigation