, Volume 86, Issue 3, pp 287–299 | Cite as

Modelling nitrous oxide emission from water-logged soils of a spruce forest ecosystem using the biogeochemical model Wetland-DNDC

  • Marc LamersEmail author
  • Joachim Ingwersen
  • Thilo Streck


During the last decades, decision makers and policy have increasingly demanded for regional and national inventories of greenhouse gas emission, such as nitrous oxide (N2O), to develop appropriate strategies and mitigation options. A potential way to derive large-scale estimates of N2O emission is the use of process-based models, such as PnET-N-DNDC or Wetland-DNDC. While PnET-N-DNDC has been effectively applied for various upland forest ecosystems, the Wetland-DNDC model has not yet been validated with regard to N2O emission. We calibrated and validated the Wetland-DNDC model on the basis of a 4-year field data set of two water-logged soils (Humic Gleysol and Histic Gleysol) of a spruce forest ecosystem. Model calibration by means of the Levenberg–Marquardt algorithm considerably improved the model performance for the period of calibration (2001–2002). The error variance was reduced by up to a factor of two and the modelling efficiency was increased from −1.24 to −0.15 (Humic Gleysol) and from −0.42 to 0.1 (Histic Gleysol). However, the model performance for the period of validation (2003–2004) and particularly for the extreme dry period in summer 2003 was not fully satisfying, notably with regard to the temporal pattern of the N2O emission.


Biogeochemical modeling Nitrous oxide emission Spruce forest ecosystem Water-logged soils 


  1. Ambus P, Christensen S (1995) Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems. J Environ Qual 24(5):993–1001CrossRefGoogle Scholar
  2. Benett J (2005) AutoIT script homepage. Downloaded 10 April 2005
  3. Bitterlich S, Durner W, Iden SC et al (2005) Inverse estimation of the unsaturated soil hydraulic properties from column outflow experiments using free-form parameterizations. Vadose Zone J 3(3):971–981CrossRefGoogle Scholar
  4. Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycle Agroecosyst 49(1–3):7–16CrossRefGoogle Scholar
  5. Brumme R, Borken W, Finke S (1999) Hierarchical control on nitrous oxide emission in forest ecosystems. Global Biogeochem Cycles 13(4):1137–1148CrossRefGoogle Scholar
  6. Butterbach-Bahl K, Gasche R, Willibald G et al (2002) Exchange of N-gases at the Hoglwald forest—a summary. Plant Soil 240(1):117–123CrossRefGoogle Scholar
  7. Butterbach-Bahl K, Kesik M, Miehle P et al (2004) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260(1–2):311–329CrossRefGoogle Scholar
  8. Cliff SS, Thiemens MH (1997) The 18O/16O and 17O/16O ratios in atmospheric nitrous oxide: a mass-independent anomaly. Science 278:1774–1776CrossRefGoogle Scholar
  9. Cui JB, Li C, Trettin C (2005a) Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model. Glob Change Biol 11(2):278–289CrossRefGoogle Scholar
  10. Cui JB, Li C, Sun G et al (2005b) Linkage of MIKE SHE to Wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation. Biogeochemical 72:147–167CrossRefGoogle Scholar
  11. Deutscher Wetterdienst (1999) Klimaatlas Bundesrepublik Deutschland. Offenbach am Main, GermanyGoogle Scholar
  12. FAO (1998) World reference base for soil resources. World Soil Resource Report No.84, FAO, Rome, ItalyGoogle Scholar
  13. Fiedler S, Jungkunst HPF, Jahn R et al (2002) Linking soil classification and soil dynamics—pedological and ecological perspectives. J Plant Nutr Soil Sci 165(4):517–529CrossRefGoogle Scholar
  14. Franks SW, Beven KJ (1997) Bayesian estimation of uncertainty in land surface-atmosphere flux predictions. J Geophys Res 102(D20):23991–23999CrossRefGoogle Scholar
  15. Franks SW, Beven KJ, Quinn PF et al (1997) On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration. Agric Forest Metorol 86(1–2):63–75CrossRefGoogle Scholar
  16. Hahn M, Gartner K, Zechmeister-Boltenstern S (2000) Greenhouse gas emissions (N2O, CO2 and CH4) from three forest soils near Vienna (Austria) with different water and nitrogen regimes. Bodenkultur 51(2):115–125Google Scholar
  17. Hill MC, Cooley RL, Pollock DW (1998) A controlled experiment in ground water flow model calibration. Ground Water 36(3):520–535CrossRefGoogle Scholar
  18. Hill MC (1998) Methods and guidelines for effective model calibration. U.S. Geological Survey, Water-Resources Investigations Report 98-4005Google Scholar
  19. IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  20. Jungkunst HF, Fiedler S, Stahr K (2004) N2O emissions of a mature Norway spruce (Picea abies) stand in the black forest (southwest Germany) as differentiated by the soil pattern. J Geophys Res 109(D7). D07302Google Scholar
  21. Kesik M, Ambus P, Baritz R et al (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2(4):353–375CrossRefGoogle Scholar
  22. Khalil MAK, Rasmussen RA (1992) The global sources of nitrous oxide. J Geophys Res 97:14651–14660Google Scholar
  23. Kohne JM, Mohanty BP, Simunek J (2006) Inverse dual-permeability modeling of preferential water flow in a soil column and implications for field-scale solute transport. Vadose Zone J 5(1):59–76CrossRefGoogle Scholar
  24. Kroeze C, Mosier A, Bouwman L (1999) Closing the global N2O budget: a retrospective analysis 1500–1994. Global Biogeochem Cycles 13(1):1–8CrossRefGoogle Scholar
  25. Lamers M, Ingwersen J, Streck T (2007a) Nitrous oxide emissions from mineral and organic soils of a Norway spruce stand in South-West Germany. Atmos Environ 41:1681–1688CrossRefGoogle Scholar
  26. Lamers M, Ingwersen J, Streck T (2007b) Modeling N2O emission from a forest upland soil: a procedure for an automatic calibration of the biogeochemical model Forest-DNDC. Ecol Model 205:52–58CrossRefGoogle Scholar
  27. Li C, Aber J, Stange F et al (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res 105(D4):4369–4384CrossRefGoogle Scholar
  28. Li C, Cui J, Sun G et al (2004) Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems. J Environ Manage 33(1):176–186Google Scholar
  29. Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: application and sources of error. In: Matson PA, Harrison RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell Science Ltd., OxfordGoogle Scholar
  30. Loague K, Green RE (1991) Statistical and graphical method for evaluating solute transport models: overview and application. J Contam Hydrol 7(1/2):51–73CrossRefGoogle Scholar
  31. Poeter EP, Hill MC (1999) UCODE, a computer code for universal inverse modeling. Comput Geosci 25(4):457–462CrossRefGoogle Scholar
  32. Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K (2004) Effects of soil moisture and temperatureon NO, NO2, and N2O emissions from European forest soils. J Geophys Res 109(D17), D17302Google Scholar
  33. Schmidt J, Seiler W, Conrad R (1988) Emission of nitrous oxide from temperate forest soils into the atmosphere. J Atmos Chem 6:95–115CrossRefGoogle Scholar
  34. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54(4):779–791CrossRefGoogle Scholar
  35. Schulte-Bisping H, Brumme R, Priesack E (2003) Nitrous oxide emission inventory of German forest soils. J Geophys Res 108(D4). doi: 10.1029/2002JD002292
  36. Schulz K, Beven K, Huwe B (1999) Equifinality and the problem of robust calibration in nitrogen budget simulations. Soil Sci Soc Am J 63(6):1934–1941CrossRefGoogle Scholar
  37. Schulz K, Beven K (2003) Data-supported robust parameterisations in land surface-atmosphere flux predictions: towards a top-down approach. Hydrol Process 17(11):2259–2277CrossRefGoogle Scholar
  38. Spohrer K, Herrmann L, Ingwersen J et al (2006) Applicability of uni- and bimodal retention functions for water flow modeling in a tropical acrisol. Vadose Zone J 5(1):48–58CrossRefGoogle Scholar
  39. Stange F, Butterbach-Bahl K, Papen H et al (2000) A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation. J Geophys Res 105(D4):4385–4398CrossRefGoogle Scholar
  40. Stange F (2001) Entwicklung und Anwendung eines prozeßorientierten Modells zur Beschreibung der N2O- und NO-Emissionen aus Böden temperater Wälder. Dissertation, Frauenhofer Institute of Atmospheric Environmental Research, Garmisch-Partenkirchen, GermanyGoogle Scholar
  41. von Arnold K, Nilsson M, Hanell B et al (2005a) Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biol Biochem 37(6):1059–1071CrossRefGoogle Scholar
  42. von Arnold K, Weslien P, Nilsson M et al (2005b) Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils. For Ecol Manage 210(1–3):239–254CrossRefGoogle Scholar
  43. Vor T, Dyckmans J, Loftfield N et al (2003) Aeration effects on CO2, N2O, and CH4 emission and leachate composition of a forest soil. J Plant Nutr Soil Sci 166(1):39–45CrossRefGoogle Scholar
  44. Zechmeister-Boltenstern S, Hahn M, Meger S et al (2002) Nitrous oxide emissions and nitrate leaching in relation to microbial biomass dynamics in a beech forest soil. Soil Biol Biochem 34(6):823–832CrossRefGoogle Scholar
  45. Zhang Y, Li CS, Trettin CC et al (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochem. Cycles 16(4). doi: 10.1029/2001GB001838
  46. Zurmuhl T, Durner W (1998) Determination of parameters for bimodal hydraulic functions by inverse modeling. Soil Sci Soc Am J 62(4):874–880CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of Soil Science and Land Evaluation, Biogeophysics SectionUniversity of Hohenheim (310d)StuttgartGermany

Personalised recommendations