Skip to main content

Advertisement

Log in

Dissolved reactive phosphorus in large rivers of East Asia

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Dissolved reactive phosphorus (DRP) concentrations in large pristine rivers of East Asia (370 samples) are reported and the relationship to lithology (phosphorites, igneous apatite-bearing deposits), relief, climate (precipitation, temperature), and population density are investigated. The DRP concentration and yield of 93% of our samples were distinctly low (<0.06–0.89 μM DRP and <0.0008–800 mol DRP/km2/year). The samples with relatively high DRP (∼7% of our samples) were most likely from point sources of human sewage rather than P-rich lithology. The principal component analyses using DRP, dissolved major elements, pH, Sr, and 87Sr/86Sr found DRP best grouped with dissolved Si and K. However, the correlation between DRP and dissolved Si is still not strong enough to justify using Si as a proxy of DRP export by chemical weathering. The large rivers draining the eastern Tibetan Plateau—the headwaters of the Mekong, Yangtze, and Yellow—together supplied 3.0 × 107 mol DRP/year, 7%, 3%, and 17% of those at mouths, respectively, and were not dominant source regions of DRP. The mouth values of the East Siberian rivers were especially low and this was due to multiple factors, e.g., low precipitation and sparse population. Stepwise regression of various parameters like precipitation, temperature, runoff, population density and relief indicated that the concentrations were not affected by any single factor, but precipitation and secondarily population density explained up to 44% of the variability in the DRP yield of the East Asian rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

  • Bethke CM (2002) The Geochemist’s Workbench 4.0. Urbana, IL

  • Beyer L, Pingpank K, Wriedt G, Boelter M (2000) Soil formation in coastal continental Antarctica (Wilkes Land). Geoderma 95(3–4):283–304

    Article  Google Scholar 

  • Boggs S (2001) Principles of sedimentology and stratigraphy, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Caraco NF (1995) Influence of human population on P transfers to aquatic systems: a regional scale study using large rivers. In: Tiessen H (ed) SCOPE 54—Phosphorus in the global environment. John Wiley & Sons Ltd

  • Cauwet G, Sidorov I (1996) The biogeochemistry of Lena River: organic carbon and nutrients distribution. Mar Chem 53(3–4):211–227

    Article  Google Scholar 

  • Collins R, Jenkins A (1996) The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas. Nepal J Hydrol 185(1–4):71–86

    Article  Google Scholar 

  • Colman AS, Mackenzie FT, Holland HD, Van Cappellen P, Ingall ED (1997) Redox stabilization of the atmosphere and oceans and marine productivity, discussion and reply. Science 275(5298):406–408

    Article  Google Scholar 

  • Compton J, Mallinson D, Glenn CR, Filippelli G, Föllmi K, Shields G, Zanin Y (2000) Variations in the global phosphorus cycle. In: Glenn CR, Prévôt-Lucas L, Lucas J (eds) Marine Authigenesis: From Global to Microbial. SEPM Special Publication, Tulsa, pp 21–33

    Google Scholar 

  • Cook PJ (1984) Spatial and temporal controls on the formation of phosphate deposits—a review. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer-Verlag, Heidelberg, pp 242–274

    Google Scholar 

  • Cotner JB, Wetzel RG (1992) Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnol Oceanogr 37(2):232–243

    Article  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64(3–4):197–214

    Article  Google Scholar 

  • Delaney ML (1998) Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochem Cycles 12(4):563–572

    Article  Google Scholar 

  • Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA (2000) LandScan: a global population database for estimating populations at risk. Photogram Eng Remote Sens 66(7):849–857

    Google Scholar 

  • Dudzinski ML, Norris JM, Chmura JT, Edwards CBH (1975) Repeatability of principal components in samples: normal and non-normal data sets compared. Multivar. Behav Res 10(1):109

    Article  Google Scholar 

  • Dürr HH, Meybeck M, Dürr SH (2005) Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Global Biogeochem. Cycles 19: doi:10.1029/2005GB002515

  • Edmond JM, Spivack A, Grant BC, Hu M-H, Chen Z, Chen S, Zeng X (1985) Chemical dynamics of the Changjiang Estuary. Cont Shelf Res 4(1–2):17–36

    Article  Google Scholar 

  • Ekholm P (1994) Bioavailability of phosphorus in agriculturally loaded rivers in southern Finland. Hydrobiologia 287(2):179–194

    Google Scholar 

  • Fekete B, Vörömarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 16(3): doi:10.1029/1999GB001254

  • Field AP (2000) Discovering statistics using SPSS for Windows: advanced techniques for the beginners. Sage, London

    Google Scholar 

  • Filippelli GM, Delaney ML (1994) The oceanic phosphorus cycle and continental weathering during the Neogene. Paleoceanography 9(5):643–652

    Article  Google Scholar 

  • Filippelli GM (1997) Controls on phosphorus concentration and accumulation in oceanic sediments. Mar Geol 139(1–4):231–240

    Article  Google Scholar 

  • Fox LE (1989) A model for inorganic control of phosphate concentrations in river waters. Geochim Cosmochim Acta 53(2):417–428

    Article  Google Scholar 

  • Fox LE (1993) The chemistry of aquatic phosphate: inorganic processes in rivers. Hydrobiologia 253(1–3):1–16

    Article  Google Scholar 

  • Froelich PN, Bender ML, Luedtke NA, Heath GR, DeVries T (1982) The marine phosphorus cycle. Am J Sci 282(4):474–511

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30

    Article  Google Scholar 

  • Global Environmental Monitoring System (1994–1996) Ontario, Canada, United Nations Environment Programme, Global Environmental Monitoring System, Freshwater Quality Program, Collaborating Centre for Freshwater Quality Monitoring and Assessment at the National Water Research Institute of Environment Canada, Burlington. http://www.gemswater.org/publications/index-e.htm. Cited 24 Feb, 2006

  • Guidry MW, Mackenzie FT (2000) Apatite weathering and the Phanerozoic phosphorus cycle. Geology 28(7):631–634

    Article  Google Scholar 

  • Guidry MW, Mackenzie FT, Arvidson RS (2000) Role of tectonics in phosphorus distribution and cycling. In: Glenn CR, Prévôt-Lucas L, Lucas J (eds) Marine authigenesis: from global to microbial. SEPM Special Publication, Tulsa, pp 35–51

    Google Scholar 

  • Guidry MW, Mackenzie FT (2003) Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim Cosmochim Acta 67(16):2949–2963

    Article  Google Scholar 

  • Guo L, Zhang J-Z, Gueguen C (2004) Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Global Biogeochem. Cycles 18: doi:10.1029/2003GB002152

  • Harrison JA, Seitzinger SP, Bouwman AF, Caraco NF, Beusen AHW, Vörösmarty CJ (2005) Dissolved inorganic phosphorus export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem. Cycles 19: doi:10.1029/2004GB002357

  • Hearn PP Jr, Hare TM, Schruben P, Sherrill D, LaMar C, Tsushima P (2000) Global GIS Database: Digital Atlas of South Asia. U.S. Geological Survey

  • Hearn PP Jr, Hare TM, Schruben P, Sherrill D, LaMar C, Tsushima P (2001) Global GIS: North Eurasia. U.S. Geological Survey & American Geological Institute

  • Hearn PP Jr, Hare TM, Schruben P, Sherrill D, LaMar C, Tsushima P (2003) USGS Global GIS (Version 6.2). The American Geological Institute

  • Holmes RM, Peterson BJ, Gordeev VV, Zhulidov AV, Meybeck M, Lammers RB, Vörösmarty CJ (2000) Flux of nutrients from Russian rivers to the Arctic Ocean: can we establish a baseline against which to judge future changes? Water Resour Res 36(8):2309–2320

    Article  Google Scholar 

  • Holmes RM, Peterson BJ, Zhulidov AV, Gordeev VV, Makkaveev PN, Stunzhas PA, Kosmenko LS, Kohler GH, Shiklomanov AI (2001) Nutrient chemistry of the Ob’ and Yenisey Rivers, Siberia: results from June 2000 expedition and evaluation of long-term data sets. Mar Chem 75(3):219–227

    Article  Google Scholar 

  • House WA, Denison FH, Armitage PD (1995) Comparison of the uptake of inorganic phosphorus to a suspended and stream bed-sediment. Water Res 29(3):767–779

    Article  Google Scholar 

  • House WA, Denison FH (1998) Phosphorus dynamics in a lowland river. Water Res 32(6):1819–1830

    Article  Google Scholar 

  • House WA (2003) Geochemical cycling of phosphorus in rivers. Appl Geochem 18(5):739–748

    Article  Google Scholar 

  • Huh Y, Tsoi M-Y, Zaitsev A, Edmond JM (1998a) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim Cosmochim Acta 62(10):1657–1676

    Article  Google Scholar 

  • Huh Y, Panteleyev G, Babich D, Zaitsev A, Edmond JM (1998b) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim Cosmochim Acta 62(12):2053–2075

    Article  Google Scholar 

  • Huh Y, Edmond JM (1999) The fluvial geochemistry of the rivers of eastern Siberia; III, Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal Highlands. Geochim Cosmochim Acta 63(7–8):967–987

    Article  Google Scholar 

  • Hutcheson G, Sofroniou N (1999) The multivariate social scientist. SAGE, London

    Google Scholar 

  • Ilyin AV, Krasilnikova NA (1989) Igneous Proterozoic-Cambrian phosphate resources in eastern Siberia, USSR. In: Notholt AJG, Sheldon RP, Davidson DF (eds) Phosphate deposits of the world, vol. 2, Phosphate rock resources. Cambridge Univ Press, Cambridge, U.K., pp 510–513

  • Kaiser HF, Rice J (1974) Little Jiffy, Mark IV. Educ Psychol Meas 34:111–117

    Article  Google Scholar 

  • Koerselman W, Vankerkhoven MB, Verhoeven JTA (1993) Release of inorganic N, P and K in peat soils; effect of temperature, water chemistry and water-level. Biogeochemistry 20(2):63–81

    Article  Google Scholar 

  • Lara RJ, Rachold V, Kattner G, Hubberten HW, Guggenberger G, Skoog A, Thomas DN (1998) Dissolved organic matter and nutrients in the Lena River, Siberian Arctic: characteristics and distribution. Mar Chem 59(3–4):301–309

    Article  Google Scholar 

  • Li Y (1986) Regional review; China. In: Cook PJ, Shergold JH (eds) Proterozoic and cambrian phosphorites. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Li Y-H (2000) A compendium of geochemistry, from solar nebula to the human brain. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Liu SM, Zhang J, Chen HT, Wu Y, Xiong H, Zhang ZF (2003) Nutrients in the Changjiang and its tributaries. Biogeochemistry 62(1):1–18

    Article  Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282(4):401–450

    Article  Google Scholar 

  • Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70(1–4):443–463

    Article  Google Scholar 

  • Meybeck M, Ragu A (1996) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients. UNEP Publication, Nairobi, Kenya

    Google Scholar 

  • Moon S, Huh Y, Qin J, Nguyen vP (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim Cosmochim Acta 71:1411–1430

    Article  Google Scholar 

  • Nash WP (1984) Phosphate minerals in terrestrial igneous and metamorphic rocks. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer-Verlag, Heidelberg, pp 215–241

    Google Scholar 

  • Notholt AJG (1980) Igneous apatite deposits; mode of occurrence, economic development and world resources. In: Sheldon RP, Burnett WC (eds) Fertilizer mineral potential in Asia and the Pacific. East-West Resour Syst Inst, Honolulu, pp 263–286

    Google Scholar 

  • Notholt AJG, Sheldon RP, Cook PJ, Shergold JH (1986) Regional review; world resources. In: Cook PJ, Shergold JH (eds) Proterozoic and cambrian phosphorites. Cambridge University Press, Cambridge, UK, pp 10–19

    Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18: doi:10.1029/2003GB002145

  • Qin J, Huh Y, Edmond JM, Du G, Ran J (2006) Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River. Chem Geol 227:53–69

    Article  Google Scholar 

  • Rudnick RL, Gao S (2004) Composition of the Continental Crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3. Elsevier, pp 1–64

  • Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim Cosmochim Acta 57(5):991–1007

    Article  Google Scholar 

  • Ruttenberg KC (2004) The global phosphorus cycle. In: Schlesinger WH (ed) Treatise on geochemistry, vol. 8. Elsevier, pp 585–643

  • Schenau SJ, Reichart GJ, De Lange GJ (2005) Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochim Cosmochim Acta 69(4):919–931

    Article  Google Scholar 

  • Seitzinger SP, Hartnett H, Lauck R, Mazurek M, Minegishi T, Spyres G, Styles R (2005) Molecular-level chemical characterization and bioavailability of dissolved organic matter in stream water using electrospray-ionization mass spectrometry. Limnol Oceanogr 50(1):1–12

    Article  Google Scholar 

  • Sferratore A, Billen G, Garnier J, Théry S (2005) Modeling nutrient (N, P, Si) budget in the Seine watershed: application of the Riverstrahler model using data from local to global scale resolution. Global Biogeochem Cycles 9: doi:10.1029/2005GB002496

  • Shan Y, McKelvie ID, Hart BT (1994) Determination of alkaline phosphatase-hydrolyzable phosphorus in natural water systems by enzymatic flow injection. Limnol Oceanogr 39(8):1993–2000

    Article  Google Scholar 

  • Smith SV, Swaney DP, Talaue-McManus L, Bartley JD, Sandhei PT, McLaughlin CJ, Dupra VC, Crossland CJ, Buddemeier RW, Maxwell BA, Wulff F (2003) Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. Bioscience 53(3):235–245

    Article  Google Scholar 

  • Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudation rates in major world drainage basins. J Geophys Res 99(7):13871–13883

    Article  Google Scholar 

  • Taylor AW, Kunish HM (1971) Phosphate equilibria on stream sediment and soil in a watershed draining an agricultural region. J Agric Food Chem 19(5):827–831

    Article  Google Scholar 

  • Tran QA, Nguyen DK (1986) Deposits; Lao Cai, Vietnam. In: Cook PJ, Shergold JH (eds) Proterozoic and cambrian phosphorites. Cambridge Univ. Press, Cambridge, UK, pp 155–161

    Google Scholar 

  • Turner RE, Rabalais NN, Justić D, Dortch Q (2003) Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64(3):297–317

    Article  Google Scholar 

  • Wang B, Clemens SC, Liu P (2003) Contrasting the Indian and East Asian monsoons; implications on geologic timescales. Mar Geol 201(1–3):5–21

    Article  Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59(9):1729–1747

    Article  Google Scholar 

  • Wu L, Huh Y, Qin J, Du G, van Der Lee S (2005) Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochim Cosmochim Acta 69(22):5279–5294

    Article  Google Scholar 

  • Yan W, Zhang S (2003) The composition and bioavailability of phosphorus transport through the Changjiang (Yangtze) River during the 1998 flood. Biogeochemistry 65:179–194

    Article  Google Scholar 

  • Zakharova EA, Pokrovsky OS, Dupré B, Zaslavskaya MB (2005) Chemical weathering of silicate rocks in Aldan Shield and Baikal Uplift; insights from long-term seasonal measurements of solute fluxes in rivers. Chem Geol 214(3–4):223–248

    Article  Google Scholar 

  • Zhang J (1996) Nutrient elements in large Chinese estuaries. Cont Shelf Res 16(8):1023–1045

    Article  Google Scholar 

  • Zhang C, Tian H, Liu J, Wang S, Liu M, Pan S, Shi X (2005) Pools and distributions of soil phosphorus in China. Global Biogeochem. Cycles 19: doi:10.1029/2004GB002296

Download references

Acknowledgments

We acknowledge NSF grant EAR-0134966 to Y.H. and Northwestern Alumnae Grant for purchase of UV–Vis spectrometer. For logistical support we thank the River Navigation Authority of Yakutia and A. Zaitsev in Siberia, Chengdu Institute of Geology and J. Qin in China, and V. P. Nguyen in Vietnam. UROP students at MIT, Northwestern, and SNU are thanked for their help in the lab, and we are grateful for discussion and data sharing of J. Borges, A. Ellis, S. Moon, and H. Noh. We thank T. Hare at USGS and P. Reich at USDA for the help with GIS datasets. The thoughtful and thorough review by an anonymous reviewer greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsook Huh.

Appendix

Appendix

Table A1 The location, water discharge, dissolved reactive phosphorus (DRP) concentrations and the P2O5 content in bed sediments of the Salween, Mekong, Red, Yangtze, and Yellow river samples
Table A2 The location, water discharge, dissolved reactive phosphorus (DRP) concentrations and the P2O5 content in bed sediments of the East Siberian rivers*

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Huh, Y. Dissolved reactive phosphorus in large rivers of East Asia. Biogeochemistry 85, 263–288 (2007). https://doi.org/10.1007/s10533-007-9133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9133-z

Keywords

Navigation