Skip to main content

The influence of Phaeocystis globosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity

Abstract

A two-dimensional microscale (5 cm resolution) sampler was used over the course of a phytoplankton spring bloom dominated by Phaeocystis globosa to investigate the structural properties of chlorophyll a and seawater excess viscosity distributions. The microscale distribution patterns of chlorophyll a and excess viscosity were never uniform nor random. Instead they exhibited different types and levels of aggregated spatial patterns that were related to the dynamics of the bloom. The chlorophyll a and seawater viscosity correlation patterns were also controlled by the dynamics of the bloom with positive and negative correlations before and after the formation of foam in the turbulent surf zone. The ecological relevance and implications of the observed patchiness and biologically induced increase in seawater viscosity are discussed and the combination of the enlarged colonial form and mucus secretion is suggested as a competitive advantage of P. globosa in highly turbulent environments where this species flourishes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Al-Hasan RH, Ali AM, Radwan SS (1990) Lipids, and their constituent fatty acids, of Phaeocystis sp. From the Arabian Gulf. Mar Biol 105:9–14

    Article  Google Scholar 

  • Alderkamp AC, Buma AGJ, van Rijssel M (2007) The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry, doi:10.1007/s10533-007-9078-2

  • Alderkamp AC, Nejstgaard JC, Verity PG, Zirbel MJ, Sazhin AF, van Rijssel M (2005) Dynamics in carbohydrate composition of Phaeocystis pouchetii colonies during spring blooms in mesocosm. J Sea Res 55:169–181

    Article  Google Scholar 

  • Andreassen IJ, Wassman P (1998) Vertical flux of phytoplankton and particulate biogenic matter in the marginal zone of the Barents Sea in May 1993. Mar Ecol Prog Ser 170:1–14

    Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Brylinski JM, Lagadeuc Y, Gentilhomme V, Dupont JP, Lafite R, Dupeuple PA, Huault MF, Auger Y, Puskaric E, Wartel M, Cabioch L (1991) Le ‘fleuve côtier’: un phénomène hydrologique important en Manche orientale (exemple du Pas de Calais). Oceanol Acta 11:197–203

    Google Scholar 

  • Buskey EJ 1998. Components of mating behavior in planktonic copepods. J Mar Syst 15:13–21

    Article  Google Scholar 

  • Cartamil DP, Lowe CG (2004) Diel movement patterns of ocean sunfish Mola mola off southern California. Mar Ecol Prog Ser 266:245–253

    Google Scholar 

  • Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572

    Article  Google Scholar 

  • Decho A, Fleeger J (1988) Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J Exp Mar Biol Ecol 118:229–243

    Article  Google Scholar 

  • Dekshenieks MM, Donaghay PL, Sullivan JM, Rines JEB, Osborn TR, Twardowski MS (2001) Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar Ecol Prog Ser 223:61–71

    Google Scholar 

  • Dreyfuss R (1962) Note biologique à propos des eaux rouges. Cah Cent Rech Biol Océanogr Méd Nice 1:14–15

    Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Incop Statist 5:115–145

    Article  Google Scholar 

  • Janse I, van Rijssel M, Ottema A, Gottschal JC (1999) Microbial breakdown of Phaeocystis mucopolysaccharides. Limnol Oceanogr 44:1447–1457

    Article  Google Scholar 

  • Jenkinson IR (1986) Oceanographic implications of non-Newtonian properties found in phytoplankton cultures. Nature 323:435–437

    Article  Google Scholar 

  • Jenkinson IR (1993) Bulk-phase viscoelastic properties of seawater. Oceanol Acta, 16:317–334

    Google Scholar 

  • Jenkinson IR, Biddanda BA (1995) Bulk-phase viscoelastic properties of seawater: relationship with plankton components. J Plankton Res 17:2251–2274

    Article  Google Scholar 

  • Jenkinson IR, Wyatt T, Malej T (1998) How viscoelastic effects of colloidal biopolymers modify rheological properties of seawater. In: Emri I, Cvelbar R (eds) Proceedings of the 5th European Rheology Conference, Portoroz, Slovenia, September 6–11, 1998, Progress and Trends in Rheology 5:57–58

  • Koike I, Shigemitsu H, Kazuki T, Kogure K (1990) Role of sub-micrometer particles in the ocean. Nature 345:242–244

    Article  Google Scholar 

  • Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis MJW, Davies A, Wassman P (1987) Phaeocystis blooms and nutrient enrichment in the continental zones of the North Sea. Ambio 16:38–46

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, New York

    Google Scholar 

  • Levin SA (1992) The problem of patterns and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Logan BE, Passow U, Alldredge AL, Grossard HP, Simon M (1995) Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Res 42:203–214

    Article  Google Scholar 

  • Mari X, Rassoulzadegan F, Brussaard CPD, Wassmann P (2005) Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance. Harmful Algae 4:895–914

    Article  Google Scholar 

  • Martin AP (2003) Phytoplankton patchiness: the role of lateral stirring and mixing. Prog Oceanogr 57:125–174

    Article  Google Scholar 

  • Miyake Y, Koizumi M (1948). The measurements of the viscosity coefficient of sea water. J Mar Res 7:63–66

    Google Scholar 

  • Myklestad S (1974) Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. J Exp Mar Biol Ecol 15:261–274

    Article  Google Scholar 

  • Myklestad SM (1988) Production, chemical structure, metabolism, and biological function of the (1,3)-linked, beta-d-glucans in diatoms. BiolOceanogr 6:313–326

    Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Google Scholar 

  • Peperzak L (2002) The wax and wane of Phaeocystis globosa blooms. Ph.D. Thesis, University of Groningen, The Netherland

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Article  Google Scholar 

  • Seuront L (2005) Hydrodynamic and tidal controls of small-scale phytoplankton patchiness. Mar Ecol Prog Ser 302:93–101

    Google Scholar 

  • Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Physica A 313:513–539

    Article  Google Scholar 

  • Seuront L, Schmitt F, Lagadeuc Y (2001) Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here? Deep-Sea Res I 43:1199–1215

    Google Scholar 

  • Seuront L, Vincent D, Mitchell JG (2006) Biologically-induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. J Mar Syst 61:118–133

    Google Scholar 

  • Seymour JR, Mitchell JG, Pearson L, Waters RL (2000) Heterogeneity in bacterioplankton abundance from 4.5 millimetre resolution sampling. Aquat Microb Ecol 22:143–153

    Google Scholar 

  • Sokal R, Oden N (1978a) Spatial autocorrelation in biology. I Methodology Biol J Linn Soc London 10:199–228

    Google Scholar 

  • Sokal R, Oden N (1978b) Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biol J Linn Soc London 10:229–249

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research. Freeman, San Francisco

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Bd Canada 167:1–311

    Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-Dimethylformamide. J Oceanogr Soc Japan 46:190–194

    Article  Google Scholar 

  • Tiselius P (1992) Behavior of Acartia tonsa in patchy food environments. Limnol Oceanogr 8:1640–1651

    Article  Google Scholar 

  • Thingstad TF, Billen G (1994) Microbial degradation of Phaeocystis material in the water column. J Mar Syst 5:55–65

    Article  Google Scholar 

  • Turner JT, Ianora A, Esposito F, Carotenuto Y, Miralto A (2002) Zooplankton feeding ecology: does a diet of Phaeocystis support good copepod grazing, survival, egg production and egg hatching success? J. Plankton Res 24:1185–1195

    Article  Google Scholar 

  • van Rijssel M, Janse I, Noordkamp DJB, Gieskes WWC (2000) An inventory of factors that affect polysaccharide production by Phaeocystis globosa. J Sea Res 43:297–306

    Article  Google Scholar 

  • Verity PG, Medlin LK (2003) Observations on colony formation by the cosmopolitan phytoplankton genus Phaeocystis. J Mar Syst 43:153–164

    Article  Google Scholar 

  • Waters RL, Mitchell JG, Seymour JR (2003) Geostatistical characterisation of centimetre-scale spatial stucture of in vivo fluorescence. Mar Ecol Prog Ser 251:49–58

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, NJ

    Google Scholar 

Download references

Acknowledgements

We thank D. Menu, who built the two-dimensional sampler, and D. Menu, D. Hilde, T. Caron, M. Priem, B. Thullier and D. Devreker for their assistance during the survey. Ian R. Jenkinson is acknowledged for his enlightening comments on topics related to the present work. This work has been financially and infrastructurally supported by a grant (Action Concertée Incitative “Jeunes Chercheurs” #3058) from the French Ministry of Research to L. Seuront, the CPER ‘Phaeocystis’ (France), PNEC ‘Chantier Manche Orientale-Sud Mer du Nord’ (France), Université des Sciences et Technologies de Lille (France), Australian Research Council (Australia) and Flinders University (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Seuront.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seuront, L., Lacheze, C., Doubell, M.J. et al. The influence of Phaeocystis globosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity. Biogeochemistry 83, 173–188 (2007). https://doi.org/10.1007/s10533-007-9097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9097-z

Keywords

  • Eastern English Channel
  • Patchiness
  • Phaeocystic globosa
  • Plankton rheology
  • Turbulence