Skip to main content

Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research

Abstract

The phytoplankton genus Phaeocystis has well-documented, spatially and temporally extensive blooms of gelatinous colonies; these are associated with release of copious amounts of dimethyl sulphide (an important climate-cooling aerosol) and alterations of material flows among trophic levels and export from the upper ocean. A potentially salient property of the importance of Phaeocystis in the marine ecosystem is its physiological capability to transform between solitary cell and gelatinous colonial life cycle stages, a process that changes organism biovolume by 6–9 orders of magnitude, and which appears to be activated or stimulated under certain circumstances by chemical communication. Both life-cycle stages can exhibit rapid, phased ultradian growth. The colony skin apparently confers protection against, or at least reduces losses to, smaller zooplankton grazers and perhaps viruses. There are indications that Phaeocystis utilizes chemistry and/or changes in size as defenses against predation, and its ability to create refuges from biological attack is known to stabilize predator–prey dynamics in model systems. Thus the life cycle form in which it occurs, and particularly associated interactions with viruses, determines whether Phaeocystis production flows through the traditional “great fisheries” food chain, the more regenerative microbial food web, or is exported from the mixed layer of the ocean.

Despite this plethora of information regarding the physiological ecology of Phaeocystis, fundamental interactions between life history traits and system ecology are poorly understood. Research summarized here, and described in the various papers in this special issue, derives from a central question: how do physical (light, temperature, particle distributions, hydrodynamics), chemical (nutrient resources, infochemistry, allelopathy), biological (grazers, viruses, bacteria, other phytoplankton), and self-organizational mechanisms (stability, indirect effects) interact with life-cycle transformations of Phaeocystis to mediate ecosystem patterns of trophic structure, biodiversity, and biogeochemical fluxes? Ultimately the goal is to understand and thus predict why Phaeocystis occurs when and where it does, and the bio-feedbacks between this keystone species and the multitrophic level ecosystem.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Admiraal W, Veldhuis MJW (1987) Determination of nucleosides and nucleotides in seawater by HPLC: application to phosphatase activity in cultures of the alga Phaeocystis pouchetii. Mar Ecol Prog Ser 36:277–285

    Google Scholar 

  • Alcaraz M, Paffenhöfer G-A, Strickler JR (1980) Catching the algae: a first account of visual observations of filter-feeding copepods. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. Univ. Press of New England, Hanover, NH, pp 241–248

    Google Scholar 

  • Alderkamp A-C, Buma AGJ, van Rijssel M The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry. doi:10.1007/s10533-007-9078-2

  • Alderkamp A-C, Nejstgaard JC, Verity PG, Zirbel MJ, Sazhin AF, van Rijssel M (2006) Dynamics in carbohydrate composition of Phaeocystis pouchetii colonies during spring blooms in mesocosms. J Sea Res 55:169–181

    Google Scholar 

  • Anderson TR (2005) Plankton functional type modeling: running before we can walk? J Plankton Res 27:1073–1081

    Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (1998) Physiological ecology of harmful algal blooms. Springer-Verlag, Berlin

    Google Scholar 

  • Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Google Scholar 

  • Arrieta JM, Weinbauer MG, Lute C, Herndl GJ (2004) Response of bacterioplankton to iron fertilization in the Southern Ocean. Limnol Oceanogr 49:799–808

    Article  Google Scholar 

  • Arrigo KR, Tagliabue A (2005) Iron in the Ross Sea, Part II: impact of discrete iron addition strategies. J Geophys Res 110, C03010. DOI:10.1029/2004JC002568

  • Arrigo KR, Worthen DL, Robenson DH (2003) A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production. J Geophys Res 108(C7):3231. DOI:10:1029/2001JC000856

    Google Scholar 

  • Becquevort S, Lancelot C, Schoemann V Experimental study on the role of Fe in the bacterial degradation of organic matter derived from Phaeocystis antarctica. Biogeochemistry. doi:10.1007/s10533-007-9079-1

  • Bratbak G, Jacobsen A, Heldal M (1998a) Viral lysis of Phaeocystis pouchetii and bacterial secondary production. Aquat Microb Ecol 16:11–16

    Google Scholar 

  • Bratbak G, Jacobsen A, Heldal M, Nagasaki K, Thingstad F (1998b) Virus production in Phaeocystis pouchetii and its relation to host cell growth and nutrition. Aquat Microb Ecol 16:1–9

    Google Scholar 

  • Breton E, Rousseau V, Parent J-Y, Ozer J, Lancelot C (2006) Hydroclimatic modulation of diatom/Phaeocystis blooms in nutrient-enriched Belgian coastal waters (North Sea). Limnol Oceanogr 51:1401–1409

    Article  Google Scholar 

  • Brussaard CPD, Bratbak G, Baudoux A-C, Ruardij P Phaeocystis and its interaction with viruses. Biogeochemistry. doi:10.1007/s10533-007-9096-0

  • Brussaard CPD, Kuipers B, Veldhuis MJW (2005a) A mesocosm study of Phaeocystis globosa population dynamics. I. Regulatory role of viruses in bloom control. Harmful Algae 4:859–874

    Google Scholar 

  • Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW (2005b) A mesocosm study of Phaeocystis globosa population dynamics. II. Significance for the microbial community. Harmful Algae 4:875–893

    Google Scholar 

  • Buesseler KO, Benitez-Nelson CR, Moran SB, Burd A, Charette M, Cochran JK, Coppola L, Fisher NS, Fowler SW, Gardner WD, Guo LD, Gustafsson O, Lamborg C, Masque P, Miquel JC, Passow U, Santschi PH, Savoye N, Stewart G, Trull T (2006) An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Mar Chem 100:213–233

    Google Scholar 

  • Butterfield NJ (1997) Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology 23:247–262

    Google Scholar 

  • Canziani GA, Hallam TG (1996) A mathematical model for a Phaeocystis sp. dominated plankton community dynamics. I. The basic model. Nonlin World 3:19–76

    Google Scholar 

  • Chan AT, Andersen RJ, LeBlanc MJ, Harrison PJ (1980) Algal plating as a tool for investigating allelopathy among marine microalgae. Mar Biol 59:7–13

    Google Scholar 

  • Chen Q, Mynett A (2004) Predicting algal blooms in the Dutch coast by integrated numerical and fuzzy cellular automata. In: Liong S-Y, Phoon K-K, Babovic V (eds) Proceedings of the 6th international conference on hydroinformatics. World Scientific Publishing Company, Singapore, pp 502–510

    Google Scholar 

  • Costas E, Aguilera A, Gonzalez-Gil S, Lopez-Rodas V (1993) Contact inhibition: also a control for cell proliferation in unicellular algae? Biol Bull 184:1–5

    Google Scholar 

  • Derelle E et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci 103:11647–11652

    Google Scholar 

  • DiTullio GR, Garcia N, Riseman SF, Sedwick PN Effects of iron concentration on the pigment composition of Phaeocystis antarctica in the Ross Sea. Biogeochemistry. doi:10.1007/s10533-007-9080-8

  • DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry JB, VanWoert ML, Dunbar RB (2000) Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:595–598

    Google Scholar 

  • Dufresne A et al (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci 100:10020–10025

    Google Scholar 

  • Dutz J, Klein Breteler WCM, Kramer G (2005) Inhibition of copepod feeding by exudates and transparent exoplymer particles (TEP) derived from a Phaeocystis globosa dominated phytoplankton community. Harmful Algae 4:929–940

    Google Scholar 

  • Dutz J, Koski M (2006) Low grazing vulnerability in flagellated, solitary cells of the prymnesiophyte Phaeocystis globosa. Limnol Oceanogr 51:1230–1238

    Article  Google Scholar 

  • Edvardsen B, Paasche E (1998) Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In: Anderson DM, Cembella AD, Hallegraef GM (eds) The physiological ecology of harmful algal blooms. Springer Verlag, Heidelberg, pp 193–208

    Google Scholar 

  • Estep KW, Nejstgaard JC, Skjoldal HR, Rey F (1990) Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey. Mar Ecol Prog Ser 67:235–249

    Google Scholar 

  • Flynn KJ (2005) Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modelers. J Plankton Res 27:1205–1210

    Google Scholar 

  • Friedman MM, Strickler JR (1975) Chemoreception and feeding in the calanoid copepods. Proc Nat Acad Sci USA 72:4185–4188

    Google Scholar 

  • Gaebler S, Hayes PK, Medlin LK Methods used to reveal genetic diversity in the colony forming prymnesiophyte Phaeocystis antarctica – preliminary results. Biogeochemistry. doi:10.1007/s10533-007-9084-4

  • Gast RJ, Moran D, Dennett MR, Beaudoin DJ, Caron DA (2006) Studies in protistan diversity in Antarctica. Abstract 57th Annual meeting of the International Society of Protozoologists, June 20–24 (p 24). Lisbon, Portugal

  • Gauthier MJ, Aubert M (1981) Chemical telemediators in the marine environment. In: Duursma EK, Dawson E (eds) Marine organic chemistry: evolution, composition, interactions, and chemistry of organic matter in seawater. Elsevier, Amsterdam, pp 225–257

    Google Scholar 

  • Gieskes WWC, Leterme SC, Peletier H, Edwards M, Reid PC Annual variation of Phaeocystis colonies Atlantic-wide since 1948, and interpretation of long-term changes in ‘Phaeocystis hotspot’ North Sea. Biogeochemistry. doi:10.1007/s10533-007-9082-6

  • Gypens N, Lancelot C, Borges AV (2004) Carbon dynamics and CO2 air-sea exchanges in the eutrophied coastal waters of the Southern Bight of the North Sea: a modelling study. Biogeosciences 1:147–157

    Article  Google Scholar 

  • Hamm CE, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Prog Ser 187:101–111

    Google Scholar 

  • Hamm C, Reigstad M, Riser CW, Muhlebach A, Wassmann P (2001) On the trophic fate of Phaeocystis pouchetii. VII. Sterols and fatty acids reveal sedimentation of Phaeocystis—derived organic matter via krill fecal strings. Mar Ecol Prog Ser 209:55–69

    Google Scholar 

  • Jacobsen A (2002) Morphology, relative DNA content, and hypothetical life cycle of Phaeocystis pouchetii (Prymnesiophyceae); with special emphasis on the flagellated cell type. Sarsia 87:338–349

    Google Scholar 

  • Jacobsen A, Martinez-Martinez J, Verity P, Frischer ME, Sandaa R-A, Larsen A (2005) Are colonies or colonial cells of Phaeocystis pouchetii (Prymnesiophyceae) susceptible to virus infection? American Society of Limnology and Oceanography, Summer Meeting, June 19–24, Santiago de Compostela, Spain

  • Jacobsen A, Larsen A, Martínez-Martínez J, Frischer ME, Verity PG Are colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) susceptible to viral infection? Aquat Microb Ecol (Subm.)

  • Janse I, van Rijssel M, van Hall PJ, Gerwig GJ, Gottschal JC, Prins RA (1996) The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells. J Phycol 32:382–387

    Google Scholar 

  • Johnston R (1963) Antimetabolites as an aid to the study of phytoplankton nutrition. J Mar Biol Assoc UK 43:409–425

    Article  Google Scholar 

  • Kamermans P (1994) Nutritional value of solitary cells and colonies of Phaeocystis sp. for the bivalve Macoma balthica (L.). Ophelia 39:35–44

    Google Scholar 

  • Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Wash DC, pp 167–182

    Google Scholar 

  • Koski M, Dutz J, Klein-Breteler WCM (2005) Selective grazing of Temora longicornis in different stages of a Phaeocystis globosa bloom – a mesocosm study. Harmful Algae 4:915–927

    Google Scholar 

  • Kwint RLJ, Kramer KJM (1996) Annual cycle of the production and fate of DMS and DMSP in a marine coastal system. Mar Ecol Prog Ser 134:217–224

    Google Scholar 

  • Lacroix G, Ruddick R, Park Y, Gypens N, Lancelot C (2007) Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images. J Mar Syst 64:66–88

    Google Scholar 

  • Lalande C (2006) Vertical export of biogenic in the Barents and Chukchi Seas. PhD. Thesis, University of Knoxville, Tennessee, USA

  • Lancelot C, Rousseau V (1994) Ecology of Phaeocystis: the key role of colony forms. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 229–245

    Google Scholar 

  • Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis M, Davies A, Wassman P (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16:38–46

    Google Scholar 

  • Lancelot C, Gypens N, Billen G, Garnier J, Roubeix V (2007) Testing an integrated river-ocean mathematical tool for linking marine eutrophication to land use: the Phaeocystis dominated Belgian coastal zone (Southern North Sea) over the past 50 years. J Mar Syst 64:216–228

    Google Scholar 

  • Lancelot C, Keller MD, Rousseau V, Smith WO Jr, Mathot S (1998) Autecology of the marine haptophyte Phaeocystis sp. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, NATO ASI series, vol G41. Springer-Verlag, Berlin, pp 209–224

  • Lancelot C, Spitz Y, Gypens N, Ruddick K, Becquevort S, Rousseau V, Lacroix G, Billen G (2005) Modelling diatom–Phaeocystis blooms and nutrient cycles in the Southern Bight of the North Sea: the MIRO model. Mar Ecol Prog Ser 289:63–78

    Google Scholar 

  • Lange M, Chen Y-Q, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92

    Google Scholar 

  • Lange M, Guillou L, Vaulot D, Simon N, Amann RI, Ludwig W, Medlin LK (1996) Identification of the class Prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. J Phycol 32:858–868

    Google Scholar 

  • Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and Hall, NY, pp 141–150

    Google Scholar 

  • Lewis WM Jr (1986) Evolutionary interpretations of allelochemical interactions in phytoplankton algae. Am Nat 127:184–194

    Google Scholar 

  • Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl sulfide and Phaeocystis: a review. J Mar Syst 5:41–53

    Google Scholar 

  • Long JD, Hay ME (2006) When intraspecific exceeds interspecific variance: effects of phytoplankton morphology and growth phase on copepod feeding and fitness. Limnol Oceanogr 51:988–996

    Article  Google Scholar 

  • Long JD, Anderson JT, Nejstgaard JC, Verity PG, Hay ME Allelopathy of a bloom-froming marine phytoplankton, Phaeocystis, in mesocosm blooms and laboratory cultures. Aquat Microb Ecol (Subm.)

  • Lubchenco J, Cubit J (1980) Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61:676–687

    Google Scholar 

  • Madhupratap M, Sawant S, Gauns M (2000) A first report on a bloom of the marine prymnesiophycean, Phaeocystis globosa, from the Arabian Sea. Ocean Acta 23:83–90

    Google Scholar 

  • Mari X, Rassoulzadegan F, Brussaard CPD, Wassmann P (2005) Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the export/retention balance. Harmful Algae 4:895–914

    Google Scholar 

  • Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33:199–212

    Google Scholar 

  • Medlin L, Zingone A A Review: the genus Phaeocystis and its species. Biogeochemistry. doi:10.1007/s10533-007-9087-1

  • Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40:732–741

    Google Scholar 

  • Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, Long JD Zooplankton grazing on Phaeocystis: a quantitative review and future challenges. Biogeochemistry (in press)

  • Nichols PD, Skerrat JH, Davidson A, Burton H, McMeekin TA (1991) Lipids of cultured Phaeocystis pouchetii: signatures for food web, biogeochemical and environmental studies in Antarctica and the Southern Ocean. Phytochem 30:3209–3214

    Google Scholar 

  • Noel MH, Kawachi M, Inouye I (2004) Induced dimorphid life cycle of a coccolithophorid Calytrosphaera sphaeroidea (Prymnesiophyceae). J Phycol 40:112–129

    Google Scholar 

  • Noordkamp DJB, Gieskes WWC, Gottschal JC, Forney LJ, van Rijssel M (2000) Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. J Sea Res 43:287–296

    Google Scholar 

  • Noordkamp DJB, Schotten M, Gieskes WWC, Forney LJ, Gottschal JC, van Rijssel M (1998) High acrylate concentrations in the mucus of Phaeocystis globosa colonies. Aquat Microb Ecol 16:45–52

    Google Scholar 

  • Nygaard K, Tobiesen A (1993) Bacterivory in algae: a survival strategy during nutrient limitation. Limnol Oceanogr 38:273–279

    Article  Google Scholar 

  • Pasquer B, Laruelle G, Becquevort S, Schoemann V, Goosse H, Lancelot C (2005) Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex Swamco-4 model. J Sea Res 53:93–108

    Google Scholar 

  • Peperzak L, Colijn F, Gieskes WWC, Peeters JCH (1998) Development of the diatom–Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon versus the daily irradiance threshold hypothesis. J Plankton Res 20:517–537

    Google Scholar 

  • Peperzak L, Duin RMN, Colijn F, Gieskes WWC (2000) Growth and mortality of flagellates and non-flagellate cells of Phaeocystis globosa (Prymnesiophyceae). J Plankton Res 22:107–119

    Google Scholar 

  • Pohnert G (2004) Chemical defense strategies of marine organisms. In: Schulz SE (ed) Topics in current chemistry. Springer-Verlag GmBH, Berlin, pp 179–219

    Google Scholar 

  • Pratt DM (1966) Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol Oceanogr 11:447–455

    Article  Google Scholar 

  • Puerta MVS, Bachvaroff TR, Delwiche CF (2004) The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts. DNA Res 11:1–10

    Google Scholar 

  • Ratkova T, Wassmann P (2002) Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea. J Mar Syst 38:47–75

    Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol 116:1–18

    Google Scholar 

  • Reid PC, Colebrook JM, Matthews JBL, Aiken J (2003) Continuous plankton recorder: concepts and history, from plankton indicator to undulating recorders. Prog Oceanogr 58:117–173

    Google Scholar 

  • Reigstad M, Wassmann P Does Phaeocystis spp. contribute significantly to vertical export of biogenic matter? Biogeochemistry. doi:10.1007/s10533-007-9093-3

  • Rousseau V, Chrétiennot-Dinet M-J, Jacobsen A, Verity P, Whipple S The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology. Biogeochemistry doi:10.1007/s10533-007-9085-3

  • Rousseau V, Vaulot D, Casotti R, Cariou V, Lenz J, Gunkel JJ, Baumann M (1994) The life cycle of Phaeocystis (Prymnesiophyceae): evidence and hypotheses. J Mar Syst 5:23–39

    Google Scholar 

  • Ruardij P, Veldhuis MJW, Brussaard CPD (2005) Modeling the bloom dynamics of the polymorphic phytoplankter Phaeocystis globosa: impact of grazers and viruses. Harmful Algae 4:941–963

    Google Scholar 

  • Sanders RW, Wickham SA (1993) Planktonic protozoa and metazoa: predation, food quality, and population control. Mar Microb Food Webs 7:197–223

    Google Scholar 

  • Sazhin AF, Felipe Artigas L, Nejstgaard JC, Frischer ME Colonization of Phaeocystis species by pennate diatoms and other protists: an important contribution to colony biomass. Biogeochemistry. doi:10.1007/s10533-007-9086-2

  • Schmidt S, Belviso S, Wassmann P, Thouzeau G, Stefels J, Reigstad M Vernal sedimentation trends in north Norwegian fjords: temporary anomaly in 234Th particulate fluxes related to Phaeocystis pouchetii proliferation. Biogeochemistry. doi:10.1007/s10533-007-9094-2

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Google Scholar 

  • Schrage M, Peters T (1999) Serious play: how the world’s best companies simulate to innovate. Harvard Business School Press, Cambridge, MD

    Google Scholar 

  • Sedwick PN, Garcia N, Riseman SF, Marsay CM, DiTullio GR Evidence for high iron requirements of colonial Phaeocystis antarctica in the Ross Sea. Biogeochemistry. doi:10.1007/s10533-007-9081-7

  • Seuront L, Lacheze C, Doubell MJ, Seymour JR, Mitchell JG The influence of Phaeocystis globosa bloom dynamics on microscale spatial patterns of phytoplankton biomass and bulk-phase seawater viscosity. Biogeochemistry. doi:10.1007/s10533-007-9097-z

  • Shenoy DM, Dileep Kumar M Variability in abundance and fluxes of dimethyl sulphide in the Indian Ocean. Biogeochemistry. doi:10.1007/s10533-007-9092-4

  • Sieburth JMcN (1960) Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters. Science 132:676–677

    Google Scholar 

  • Slocum CJ (1980) Differential susceptibility to grazers in two phases of an intertidal alga: advantages of heteromorphic generations. J Exp Mar Biol Ecol 46:99–110

    Google Scholar 

  • Smaal AC, Twisk F (1997) Filtration and absorption of Phaeocystis cf. globosa by the mussel Mytilus edulis L. J Exp Mar Biol Ecol 209:33–46

    Google Scholar 

  • Spero HJ (1985) Chemosensory capabilities in the phagotrophic dinoflagellate Gymnodinium fungiforme. J Phycol 21:181–184

    Article  Google Scholar 

  • Stanley SM (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc Nat Acad Sci USA 70:1486–1489

    Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197

    Google Scholar 

  • Stefels J, Dijkhuizen L (1996) Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar Ecol Prog Ser 131:307–313

    Google Scholar 

  • Stefels J, Van Boekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol Prog Ser 97:11–18

    Google Scholar 

  • Stefels J, van Leeuwe MA (1998) Effects of iron and light stress on the biogeochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations. J Phycol 34:486–495

    Google Scholar 

  • Stefels J, Steinke M, Turner S, Malin G, Belviso S Environmental constraints on the production of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling. Biogeochemistry. doi:10.1007/s10533-007-9091-5

  • Steinke M, Stefels J, Stamhuis E (2006) Dimethyl sulfide triggers search behavior in copepods. Limnol Oceanogr 51:1925–1930

    Article  Google Scholar 

  • Stelfox-Widdicombe CE, Archer SD, Burkill PH, Stefels J (2004) Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring. J Sea Res 51:37–51

    Google Scholar 

  • Strom SL, Loukos H (1998) Selective feeding by protozoa: model and experimental behaviors and their consequences for population stability. J Plankton Res 20:831–846

    Google Scholar 

  • Strom S, Wolfe G, Holmes J, Stecher H, Shimeneck C, Lambert S, Moreno E (2003) Chemical defense in microplankton. I. Feeding and growth rates of heterotrophic protests on the DMS-producing phytoplankter Emiliania huxleyi. Limnol Oceanogr 48:217–229

    Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Google Scholar 

  • Tagliabue A, Arrigo KR (2005) Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry. J Geophys Res 110, C03009. DOI: 10.1029/2004JC002531

  • Tagliabue A, Arrigo KR (2006) Processes governing the supply of iron to phytoplankton in stratified seas. J Geophys Res 111, C06019. DOI: 10.1029/2005JC003363

  • Tang KW (2003) Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. J Plankton Res 25:831–842

    Google Scholar 

  • Targett NM, Ward JE (1991) Bioactive microalgal metabolites: mediation of subtle ecological interactions in phytophagous suspension-feeding marine invertebrates. Bioorganic Mar Chem 4:91–118

    Google Scholar 

  • Thingstad F, Billen G (1994) Microbial degradation of Phaeocystis material in the water column. J Mar Syst 5:55–66

    Google Scholar 

  • Tillmann U (1998) Phagotrophy by a plastidic haptophyte, Prymnesium patelliferum. Aquat Microb Ecol 14:155–160

    Google Scholar 

  • Turner SM, Nightingale PD, Broadgate W, Liss PS (1995) The distribution of dimethyl sulfide and dimethylsulphoproprionate in Antarctic waters and sea ice. Deep-Sea Res II 42:1059–1080

    Google Scholar 

  • Uchida T (1977) Excretion of a diatom inhibitory substance by Prorocentrum micans Ehrenberg. Jap J Ecol 27:1–4

    Google Scholar 

  • Van Alstyne KL (1986) Effects of phytoplankton taste and smell on feeding behavior of the copepod Centropages hamatus. Mar Ecol Prog Ser 34:187–190

    Google Scholar 

  • van Boekel WHM (1992) Phaeocystis colony mucus components and the importance of calcium ions for stability. Mar Ecol Prog Ser 87:301–305

    Google Scholar 

  • van Hilst CM, Smith WO Jr (2002) Photosynthesis/irradiance relationships in the Ross Sea, Antarctica, and their control by phytoplankton assemblage composition and environmental factors. Mar Ecol Prog Ser 226:1–12

    Google Scholar 

  • van Leeuwe MA, de Baar HJW (2000) Photoacclimation by the Antarctic flagellate Pyramimonas sp. (Prasinophyceae) in response to iron limitation. Eur J Phycol 35:295–303

    Google Scholar 

  • van Leeuwe MA, Stefels J (1998) Effects of iron and light stress on the biogeochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition. J Phycol 34:496–503

    Google Scholar 

  • van Leeuwe MA, Stefels J Photosynthetic responses in Phaeocystis antarctica towards varying light and iron conditions. Biogeochemistry. doi:10.1007/s10533-007-9083-5

  • van Rijssel M, Alderkamp A-C, Nejstgaard JC, Sazhin AF, Verity PG Haemolytic activity of living Phaeocystis pouchetii during mesocosm blooms. Biogeochemistry. doi:10.1007/s10533-007-9095-1

  • van Rijssel M, Hamm CE, Gieskes WWC (1997) Phaeocystis globosa (Prymnesiophyceae) colonies: hollow structures built with small amounts of polysaccharides. Eur J Phycol 32:185–192

    Google Scholar 

  • Vaulot D, Birrien J-L, Marie D, Casotti R, Veldhuis MJW, Kraaij GW, Chretiennot-Dinet M-J (1994) Morphology, ploidy, pigment composition, and genome size of cultured strains of Phaeocystis (Prymnesiophyceae). J Phycol 30:1022–1035

    Google Scholar 

  • Veldhuis MJW, Admiraal W (1987) Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar Biol 95:47–54

    Google Scholar 

  • Veldhuis MJW, Wassmann P (2005) Bloom dynamics and biological control of a high biomass HAB species in European coastal waters: a Phaeocystis case study. Harmful Algae 4:805–809

    Google Scholar 

  • Veldhuis MJW, Brussaard CPD, Noordeloos AAM (2005) Living in a Phaeocystis colony: a way to be a successful algal species. Harmful Algae 4:841–858

    Google Scholar 

  • Veldhuis MJW, Colijn F, Admiraal W (1991) Phosphate utilization in Phaeocystis pouchetii (Haptophyceae). Mar Biol 12:53–62

    Google Scholar 

  • Verity PG (1988) Chemosensory behavior in marine planktonic ciliates. Bull Mar Sci 43:772–782

    Google Scholar 

  • Verity PG (1991) Feeding in planktonic protozoans: evidence for non-random acquisition of prey. Mar Microb Food Webs 5:69–76

    Google Scholar 

  • Verity PG (2000) Grazing experiments and model simulations of the role of zooplankton in Phaeocystis food webs. J Sea Res 43:317–343

    Google Scholar 

  • Verity PG, Medlin LK (2003) Observations on colony formation by the cosmopolitan phytoplankton genus Phaeocystis. J Mar Syst 43:153–164

    Google Scholar 

  • Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–293

    Google Scholar 

  • Verity PG, Villareal TA, Smayda TJ (1988a) Ecological investigations of blooms of colonial Phaeocystis pouchetii. I. Abundance, biochemical composition, and metabolic rates. J Plankton Res 10:219–248

    Google Scholar 

  • Verity PG, Villareal TA, Smayda TJ (1988b) Ecological investigations of blooms of colonial Phaeocystis pouchetii. II. The role of life cycle phenomena in bloom termination. J Plankton Res 10:749–766

    Google Scholar 

  • Wassmann P (1994) Significance of sedimentation for the termination of Phaeocystis blooms. J. Mar Syst 5:81–100

    Google Scholar 

  • Wassmann P, Ratkova T, Reigstad M (2005) The contribution of single and colonial cells of Phaeocystis pouchetii to spring and summer blooms in the north-eastern North Atlantic. Harmful Algae 4:823–840

    Google Scholar 

  • Wassmann P, Slagstad D (1993) Seasonal and annual dynamics of particulate carbon flux in the Barents Sea, a model approach. Polar Biol 13:363–372

    Google Scholar 

  • Weisse T, Tande K, Verity P, Hansen F, Gieskes W (1994) The trophic significance of Phaeocystis blooms. J Mar Syst 5:67–79

    Google Scholar 

  • Whipple SJ, Patten BC, Verity PG (2005a) Life cycle of the marine alga Phaeocystis: a conceptual model to summarize literature and guide research. J Mar Syst 57:83–110

    Google Scholar 

  • Whipple SJ, Patten BC, Verity PG (2005b) Colony growth and evidence for colony multiplication in Phaeocystis pouchetii (Prymnesiophyceae) isolated from mesocosm blooms. J Plankton Res 27:495–501

    Google Scholar 

  • Whipple SJ, Patten BC, Verity PG, Nejstgaard JC, Long JD, Anderson JT, Jacobsen A, Larsen A, Martinez-Martinez J, Borrett SR. Gaining integrated understanding of Phaeocystis spp. (Prymnesiophyceae) through model-driven laboratory and mesocosm studies. Biogeochemistry. doi:10.1007/s10533-007-9089-2

  • Wolfe GV (2000) The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol Bull 198:225–244

    Google Scholar 

  • Wolfe GV, Levasseur M, Cantin G, Michaud S (2000) DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: application of the dilution technique. Deep-Sea Res I 47:2243–2264

    Google Scholar 

  • Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defense in a unicellular marine alga. Nature 387:894–897

    Google Scholar 

  • Wooten EC, Roberts EC (2006) Biochemical recognition of prey by planktonic protozoa. Abstract 57th Annual meeting of the International Society of Protozoologists, June 20–24, 2006 (p 57). Lisbon, Portugal

  • Yoshida T, Hairston NG, Ellner SP (2004) Evolutionary trade-off between defense against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proc Royal Soc Lond Ser B, Biol Sci 271:1947–1953

    Google Scholar 

  • Zingone A, Chretiennot-Dinet M-J, Lange M, Medlin L (1999) Morphological and genetic characterization of Phaeocystis cordata and P. jahnii (Prymnesiophyceae), two new species from the Mediterranean Sea. J Phycol 35:1322–1337

    Google Scholar 

Download references

Acknowledgments

This special issue of Biogeochemistry represents the culmination of extensive efforts by many scientists involved in various aspects of Phaeocystis research. Integration of their activities would not have been possible without the support of the scientific committee on ocean research (SCOR) (www.jhu.edu/scor, accessed 6/30/06). SCOR working group #120 was devoted to Phaeocystis studies; chair and co-chair were W.W.C. Gieskes and S. Belviso, respectively. We thank E. Urban at SCOR and the organizers and participants of the Phaeocystis workshops held in 2002 (University of East Anglia, UK), 2004 (Savannah, GA, USA), and 2005 (University of Groningen, The Netherlands). Participation by the senior author in the research and SCOR activities reported here was provided by USA National Science Foundation grant OPP-00-83381 and Department of Energy grant FG02-98ER62531. We thank G. Malin, J. Stefels, and W.W.C. Gieskes for improvements to an earlier draft, and A. Boyette for drafting the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Verity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verity, P.G., Brussaard, C.P., Nejstgaard, J.C. et al. Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research. Biogeochemistry 83, 311–330 (2007). https://doi.org/10.1007/s10533-007-9090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9090-6

Keywords

  • Biocomplexity
  • Plankton life cycles
  • Phaeocystis
  • Viruses
  • Zooplankton