Skip to main content

A taxonomic review of the genus Phaeocystis

Abstract

Phaeocystis is recognized both as a nuisance and as an ecologically important phytoplankton species. Its polymorphic life cycle with both colonial and flagellated cells causes many taxonomic problems. Sequence variation among 22 isolates representing a global distribution of the genus has been compared using three molecular markers. The ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) spacer is too conserved to resolve species. The most conserved 18S ribosomal deoxyribonucleic acid (rDNA) analysis suggests that an undescribed unicellular Phaeocystis sp. (isolate PLY559) is a sister taxon to the Mediterranean unicellular Phaeocystis jahnii; this clade branched prior to the divergence of all other Phaeocystis species, including the colonial ones. The internal transcribed spacer (ITS) region shows sufficient variation that some spatial population structure can be recovered, at least in P. antarctica. P. globosa and P. pouchetii have multiple different ITS copies, suggestive of cryptic species that are still able to hybridize. A molecular clock has been constructed that estimates the divergence of the cold water colonial forms from the warm-water colonial forms to be about 30 Ma and the divergence of P. antarctica and P. pouchetii to be about 15 Ma. A short description of the colonial stage and the flagellated stage for each formally recognized species is provided. Morphological information is also provided on a number of undescribed species. These include the strain Ply 559, consisting of non-colonial cells with peculiar tubular extrusomes, a second non-colonial species from the north western Mediterranean Sea producing a lot of mucus, and a colonial species with scale-less flagellates found in Italian waters. In addition, three flagellated morphotypes with scales different from those of P. antarctica were reported in the literature from Antarctic waters. The picture emerging from both molecular and morphological data is that the number of species in the genus is still underestimated and that cryptic or pseudocryptic diversity requires a sound assessment in future research of this genus. Based on all published observations, an emended description of the genus is provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bätje M, Michaelis H (1986) Phaeocystis pouchetii blooms in the east Frisian coastal waters (German Bight, North Sea). Mar Biol 93:21–27

    Article  Google Scholar 

  • Baumann MEM, Jahnke J (1986) Marine Planktonalgen der Arktis. I. Die Haptophycee Phaeocystis pouchetii. Mikrokosmos 75:262–265

    Google Scholar 

  • Baumann MEM, Brandini FP, Staubes R (1993) The influcence of light and temperature on carbon specific DMS-release by cultures of Phaeocystis antarctica and three Antarctic diatoms. Mar Chem 45:56–78

    Google Scholar 

  • Baumann MEM, Lancelot C, Brandini FP, Sakshaug E, John DM (1994) The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach. J Mar Syst 5:23–39

    Article  Google Scholar 

  • Buma AGJ, Bano N, Veldhuis MJW, Kraay GW (1991) Comparison of the pigmentation of two strains of the prymnesiophyte Phaeocystis sp. Neth J Sea Res 27:173–182

    Article  Google Scholar 

  • Büttner J (1911) Die farbigen Flagellaten des Kieler Hafens. Wiss Untersuch, NF Abt Kiel 12:119–133

    Google Scholar 

  • Chang FH (1983) The mucilage producing Phaeocystis pouchetii (Prymnesiophyceae) cultured from the 1981 ‘Tasman Bay slime’. N Z J Mar Freshw Res 17:165–168

    Article  Google Scholar 

  • Chrétiennot-Dinet MJ, Giraud-Guille M-M, Vaulot D, Putaux J-L, Saito Z, Chanzy H (1997) The chitinous nature of the filaments ejected by Phaeocystis (Prymnesiophyceae). J Phycol 33:666–672

    Article  Google Scholar 

  • Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological times. Trends Ecol Evol 8:162–166

    Article  Google Scholar 

  • Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS 2003. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127

    Article  Google Scholar 

  • Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Brown AJL (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of plankton foraminifers. Nature 405:43–47

    Article  Google Scholar 

  • Darling KF, Kucera M, Pudsey CJ, Wade CM (2004) Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. PNAS 101:7657–7662

    Article  Google Scholar 

  • Davidson AT (1985) Aspects of the biology of Phaeocystis pouchetii (Prymnesiophyceae) (Hons. Thesis). University of Tasmania

  • Davidson AT, Marchant H (1992) The biology and ecology of Phaeocystis (Prymnesiophyceae). In: Round FE, Chapman DJ (eds) Progress in phycological research, vol. 8. Biopress, Bristol, pp 1–45

  • Edvardsen B, Eikrem W, Green JC, Andersen RA, Moon-Van Der Staay SY, Medlin LK (2000). Phylogenetic reconstructions of the Haptophyta inferred from rRNA sequences and available morphological data. Phycologia 39:19–35

    Article  Google Scholar 

  • Fevolden SE, Schneppenheim R (1989) Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean. Polar Biol 9:533–539

    Article  Google Scholar 

  • Gäbbler S, Hayes PK, Medlin LK (2007) Methods used to reveal genetic diversity in the colony forming prymnesiophytes Phaeocystis antarctica, P. globosa and P. pouchetii––preliminary results. Biogeochemistry (this volume) doi 10.1007/s10533-007-9084-4

  • Hallegraeff GM (1983) Scale-bearing and loricate nanoplankton from the East Australian Current. Bot Mar 36:493–515

    Article  Google Scholar 

  • Hamm C, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Prog Ser 187:101–111

    Google Scholar 

  • Jahnke J (1989) The light and temperature dependence of growth rate and elemental composition of Phaeocystis globosa Scherffel and P. pouchetii (Har.) Lagerh. in batch cultures. Neth. J Sea Res 23:15–21

    Google Scholar 

  • Jahnke J, Baumann MEM (1986) Die marine Planktonalge Phaeocystis globosa: eine Massenform unserer Küstengewässer. Mikrokosmos 75:357–359

    Google Scholar 

  • Jahnke J, Baumann M (1987) Differentiation between Phaeocystis pouchetii (Har.) Lagerheim and Phaeocystis globosa Scherffel. I. Colony shapes and temperature tolerances. Hydrobiol Bull 21:141–147

    Article  Google Scholar 

  • Jacobsen A (2000) New aspects of bloom dynamics of Phaeocystis pouchetii (Haptophyta) in Norwegian Waters. PhD Thesis. University of Bergen, Norway, 138 pp

  • Jacobsen A (2002) Morphology, relative DNA content and hypothetical life cycle of Phaeocystis pouchetii (Prymnesiophyceae); with special emphasis on the flagellated cell type. Sarsia 87:338–349

    Article  Google Scholar 

  • Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 32:923–927

    Article  Google Scholar 

  • Karsten G (1905) Das Phytoplankton des Antarktischen Meeres nach dem Material der Deutschen Tiefsee-Expedition 1898–1899. Wiss. Ergeb. Deutch. Tief. Exp. Valdivia 1898–1899 Band I. , Teil 2, 136 pp

  • Keller MD, Ellows WKB, Guillard RL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzmann E, Cooper W (eds) Biogenic Sulfur in the Environment. American Chemical Society, Washington DC, pp 167–182

    Google Scholar 

  • Kooistra WHCF, Medlin LK (1996) Evolution of the diatoms (Bacillariophyta): IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol Phyl Evol 6:391–407

    Article  Google Scholar 

  • Kornmann P (1955) Beobachtungen an Phaeocystis-Kulturen. Helgol Wiss Meeres 5:218–233

    Article  Google Scholar 

  • Lagerheim G (1893) Phaeocystis nov. gen. grundadt på Tetraspora poucheti Har. Bot Not 1:32–33

    Google Scholar 

  • Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis MJW, Davies A, Wassmann P (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16:38–46

    Google Scholar 

  • Lange M (1997) Molecular genetic investigation within the genus Phaeocystis (Prymnesiophyceae). P.D. dissertation, University of Bremen, Germany, 170 pp

    Google Scholar 

  • Lange M, Chen Y-Q, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92

    Article  Google Scholar 

  • Larsen J, Moestrup Ø (1989) Guide to toxic and potentially toxic marine algae. Fish Inspection Service, Minister of Fisheries, Copenhagen

    Google Scholar 

  • Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33:199–212

    Google Scholar 

  • Marchant HJ, Davison AT, Kelly GY (1991) UV-B protecting compounds in the marine alga Phaeocystis pouchetii from Antarctica. Mar Biol Berlin 109:391–395

    Article  Google Scholar 

  • Marchant HJ, Scott FJ, Davidson ST (2005) Haptophytes: Order Prymnesiales. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 255–275

    Google Scholar 

  • Moestrup Ø (1979) Identification by electron microscopy of marine nanoplankton from New Zealand including the description of four new species. N Z J Bot 17:61–95

    Google Scholar 

  • Moestrup Ø, Larsen J (1992) Potentially toxic phytoplankton 1. Haptophyceae (Prymnesiophyceae). In: Lindley S (ed) ICES Identification leaflets for plankton, leaflet No. 179. Natural Environmental Research Council, Plymouth, pp 1–11

    Google Scholar 

  • Montresor M, Lovejoy C, Orsini L, Procaccini G (2003) Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26:186–194

    Google Scholar 

  • Olbers D, Gouretski V, Seiss G, Shröter J (1962) Hydrographic atlas of the Southern Ocean. Druckhaus Nord: Bremerhaven. 82 plates

    Google Scholar 

  • Parke M, Green JC, Manton I (1971) Observations on the fine structure of zoids of the genus Phaeocystis (Haptophyceae). J Mar Biol Assoc UK 51:927–941

    Article  Google Scholar 

  • Pienaar RN (1991) Thread formation in the motile cells of Phaeocystis. Electr. Microsc Soc S Africa 21:135–137

    Google Scholar 

  • Pienaar RN (1996) Observations on the disc bearing phase of Phaeocystis in South African Waters. In: Borg M, Semesi A, Pederson M, Bergman B (eds) Current trends in marine botanical research in the East African Region (77–98) Sida, Marine Science Program, Department Of Research Co-Operation, SAREC. ISBN> 91-630-4907-4

  • Pouchet G (1892) Sur une algue pélagique nouvelle. Compte Rendues séance à 16 Janvier 44:34–36

    Google Scholar 

  • Rousseau V, Vaulot D, Casotti R, Cariou V, Lenz J, Gunkel J, Baumann M (1994) The life cycle of Phaeocystis (Prymnesiophyceae): evidence and hypotheses. J Mar Syst 5:23–39

    Article  Google Scholar 

  • Scherffel A (1900) Phaeocystis globosa nov. spec. nebst einigen Betrachtungen über die Phylogenie niederer, insbesondere brauner Organismsen. Wiss Meer Abt Helgo 4:1–28

    Google Scholar 

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Article  Google Scholar 

  • Scott FJ, Marchant HJ (2005) Antarctic marine protists. Australian Biological Resources Study, Canberra

    Google Scholar 

  • Shen P, van Rijssel M, Wang Y, Songhui L, Jufang C, Qi Y (2004) Toxic Phaeocystis globosa strain from China grow at remarkably high temperatures. In: Steidinger KA, Landsberg JH, Tomas CR, Vargo GA (eds) Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO, St. Petersburg, pp 396–398

    Google Scholar 

  • Smith WO, Codispoti LA, Nelson DM, Manley T, Buskey EJ, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516

    Article  Google Scholar 

  • Sournia A (1988) Phaeocystis (Prymnesiophyceae): How many species? Nova Hedwigia 47:211–217

    Google Scholar 

  • Treshnikov AF (1964) Surface water circulation in the Antarctic Ocean. In: Russian. Sovet. Antarkticheskaia Eksped., Inform. biull., 45:5–8. Eng. transl. (1965) In: Soviet Antarctic Expedition, Information Bulletin, 5:81–83

  • Vaulot D, Birrien J-L, Marie D, Casotti R, Veldhuis MJW, Kraay GW, Chrétiennot-Dinet M-J (1994) Morphology, ploidy, pigment composition and genome size of cultured strains of Phaeocystis (Prymnesiophyceae). J Phycol 30:1022–1035

    Article  Google Scholar 

  • Veldhuis MJW, Wassmann P (eds) (2005) Bloom dynamics and biological control of Phaeocystis: a HAB species in European coastal waters. Harmful Algae 4:805–964

    Google Scholar 

  • Verity PG, Villareal TA, Smayda TJ (1988) Ecological investigations of blooms of colonial Phaeocystis pouchetii. II. The role of life-cycle phenomena in bloom termination. J Plankton Res 10:749–766

    Article  Google Scholar 

  • Whipple SJ, Patten BC, Verity PG (2005) Life cycle of the marine alga Phaeocystis: A conceptual model to summarize literature and guide research. J Mar Syst 57:83–110

    Article  Google Scholar 

  • Zingone A, Chrétiennot-Dinet MJ, Lange M, Medlin LK (1999) Morphological and genetic characterization of Phaeocystis cordata and P. jahnii (Prymnesiophyceae), two new species from the Mediterranean Sea. J Phycol 39:1322–1337

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Philipp Assmy kindly provided photographs of P. antarctica. Gandi Forlani provided photographs of Phaeocystis sp. 1 (PML 559). Photographs taken from Fig. 5.2 from Scott and Marchant (2005) were reproduced with permission from F.J. Scott and H.J. Marchant (Eds), Antarctic Marine Protists 258, (2005), Copyright Australian Biological Resources Study, Australian Antarctic Division and Andrew Davidson. Figures reproduced from ‘Morphology, relative DNA content and hypothetical life cycle of Phaeocystis pouchetii (Prymnesiophyceae); with special emphasis on the flagellated cell type’ by Jacobsen (2002) from Sarsia, www.tandf.no/sarsia, 2002, 87: 338–349, by permission of Taylor and Francis AS. Figures 2a, g in Vaulot et al. (1994) and Fig. 6, 9, 32 in Zingone et al. (1999) were reproduced with permission of the Phycological Society of America. This review falls within the scopes of the EU Network of Excellence MARBEF (Marine Biodiversity and Ecosystem Functioning).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Medlin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medlin, L., Zingone, A. A taxonomic review of the genus Phaeocystis . Biogeochemistry 83, 3–18 (2007). https://doi.org/10.1007/s10533-007-9087-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9087-1

Keywords

  • Molecular clock
  • Phaeocystis antarctica
  • P. cordata
  • P. globosa
  • P. jahnii
  • P. pouchetii
  • P. scrobiculata
  • rDNA analysis