Skip to main content

The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology

Abstract

Despite numerous investigations, the number and role of morphotypes involved in the life cycle of Phaeocystis species remain under debate. This is partly due to the application of different methodologies such as light, transmission, scanning electron microscopy and flow cytometry on specific samples. This heterogeneity of approaches results in the incomplete morphometric description of the different cell types existing within one species according to relevant criteria and the indetermination of the ploidy level of each observed stage. We review here the different morphotypes observed within each of the six Phaeocystis species recognized up to now. Four different cell types have been observed. In common to all six species is the occurrence of a scaly flagellate producing star-forming filaments (all species except P. jahnii) or not (P. globosa and P. jahnii). In three colony-forming species, P. globosa, P. pouchetii and P. antarctica, three morphotypes are observed: a flagellate with scales and filaments, a colonial cell, and a flagellate devoid of scales and filaments. In the non-colony-forming species, P. scrobiculata and P. cordata, only flagellates with scales and filaments have been observed. While suspected in P. pouchetii and P. antarctica, a haploid–diploid life cycle has only been evidenced for P. globosa. The two main prominent features of this cycle are that sexuality is prevalent in colony bloom formation and termination and that two types of vegetative reproduction exist. The ecological relevance of alternating haploid and diploid stages is not clearly apparent on the basis of existing ecological studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Admiraal W, Venekamp LAH (1986) Significance of tintinnid grazing during blooms of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:61–66

    Article  Google Scholar 

  • Bätje M, Michaelis H (1986) Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea). Mar Biol 93:21–27

    Article  Google Scholar 

  • Baumann MEM, Lancelot C, Brandini FP, Sakshaug E, John DM (1994) The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:5–22

  • Billard C (1994) Life cycles. In Green JC, Leadbeater BSC (Eds) The haptophyte algae. The systematics association special, vol 51. Clarendon Press, Oxford, pp 167–186

    Google Scholar 

  • Billard C, Inouye I (2004) What is new in coccolithophore biology? In: Thierstein H, Young J (Eds). Coccolithophores – from molecular processes to global impact. Springer-Verlag, Berlin Heidelberg, pp 1–30

    Google Scholar 

  • Boalch GT (1987) Recent blooms in the Western English Channel. Rapp PV Réun Cons Int Explor Mer.187:94–97

    Google Scholar 

  • Brussaard CPD, Kuipers B, Veldhuis MJW (2005) A mesocosm study of Phaeocystis globosa population dynamics. I. Regulatory role of viruses in bloom control. In: Veldhuis MJW, Wassmann P (eds) Harmful algae, vol 4. pp 859–874

  • Buck KR, Garrison DL (1983) Protists from the ice-edge region of the Weddell Sea. Deep Sea Res 30:1261–1277

    Article  Google Scholar 

  • Cadée GC (1991) Phaeocystis colonies wintering in the water column? Neth. J Sea Res 28:227–230

    Google Scholar 

  • Cariou V, Casotti R, Birrien J-L, Vaulot D (1994) The initiation of Phaeocystis colonies. J Plankton Res 16:457–470

    Article  Google Scholar 

  • Chen Y-Q, Wang N, Zhang P, Zhou H, Qu L-H (2002) Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa. Biochem Syst Ecol 30:15–22

    Article  Google Scholar 

  • Chrétiennot-Dinet M-J, Giraud-Guille M-M, Vaulot D, Puteaux J-L, Saito H, Chanzy Y (1997) The chitinous nature of filaments ejected by Phaeocystis (Prymnesiophyceae). J Phycol 33:666–672

    Article  Google Scholar 

  • Chrétiennot-Dinet M-J (1999) An enigma in marine nanoplankton. The role of star-like structures produced by Phaeocystis. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, The Netherlands, pp 205–213

    Google Scholar 

  • Claustre H, Poulet SA, Williams R, Marty J-C, Coombs S, Ben Mlih F, Hapette AM, Martin- Jezequel V (1990) A biochemical investigation of a Phaeocystis sp. bloom in the Irish sea. J Mar biol Ass UK. 70:197–207

    Google Scholar 

  • Davidson AT (1985) Aspects of the biology of Phaeocystis pouchetii (Prymnesiophyceae). B Sc Thesis, University of Tasmania, 212 pp

  • Davidson AT, Marchant HJ (1992a) The biology and ecology of Phaeocystis (Prymnesiophyceae). In: Round FE, Chapman DJ (Eds) Progress in phycological research, vol 8. Biopress, Bristol, pp 1–45

    Google Scholar 

  • Davidson AT, Marchant HJ (1992b) Protist abundance and carbon concentration during a Phaeocystis-dominated bloom at an Antarctic coastal site. Polar Biol 12:387–395

    Article  Google Scholar 

  • Dutz J, Koski M (2006) Trophic significance of solitary cells of the prymnesiophyte Phaeocystis globosa depends on cell type. Limnol Oceanogr 51(3):1230–1238

    Google Scholar 

  • Dutz J, Klein Breteler WCM, Kramer G (2005) Inhibition of copepod feeding by exsudates and transparent exopolymer particles (TEP) derived from a Phaeocystis globosa dominated phytoplankton community. In: Veldhuis MJW, Wassmann P (eds) Harmful algae, vol 4. pp 915–940

  • Edvardsen B (2002). Life cycle strategies in the haptophyte genera Chrysochromulina and Prymnesium. In: Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) Proceedings of the LIFEHAB workshop: life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, October 2001. Research in Enclosed Seas Series, pp 67–70

  • Edvardsen B, Paasche E (1992) Two motile stages of Chrysochromulina polylepis (Prymnesiophyceae): morphology, growth and toxicity. J Phycol 28:104–114

    Article  Google Scholar 

  • Edvardsen B, Vaulot D (1996) Ploidy analysis of the two motile forms of Chrysochromulina polylepis (Prymnesiophyceae). J Phycol 32:94–102

    Article  Google Scholar 

  • Edvardsen B, Eikrem W, Green JC, Andersen RA, Moon-van der Staay SY, Medlin LK (2000) Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia 39(1):19–35

    Article  Google Scholar 

  • Eilertsen HC (1989) Phaeocystis pouchetii (Hariot) Lagerheim, a key species in Arctic marine ecosystems: life history and physiology. Rapp PV Réun Cons Int Explor Mer 188:131

    Google Scholar 

  • Escaravage V, Peperzak L, Prins TC, Peeters JCH, Joordens JCA (1995) The development of a Phaeocystis sp. bloom in a mesocosm experiment in relation to nutrients, irradiance and coexisting algae. Ophelia 42:55–74

    Google Scholar 

  • Estep KW, Davis PG, Hargraves PE, Sieburth JM (1984) Chloroplast containing microflagellates in natural populations of north Atlantic nanoplankton, their identification and distribution: including a description of five new species of Chrysochromulina (Prymnesiophyceae). Protistol 20:613–634

    Google Scholar 

  • Fryxell GA (1989) Marine phytoplankton at the Weddell Sea Ice Edge: Seasonal changes at the specific level. Polar Biol 10:1–18

    Article  Google Scholar 

  • Gasparini S, Daro M-H, Antajan E, Tackx M, Rousseau V, Parent J-Y, Lancelot C (2000) Mesozooplankton grazing during the Phaeocystis globosa bloom in the Southern Bight of the North Sea. J Sea Res 43:345–356

    Article  Google Scholar 

  • Garrison DL, Thomsen HA (1993) Ecology and biology of ice biota. Berichte zur Polarforschung 121:68–74

    Google Scholar 

  • Gayral P, Fresnel J (1983) Description, sexualité et cycle de développement d’une nouvelle Coccolithophoracée (Prymnesiophyceae): Pleurochrysis pseudoroscoffensis sp. Nov Protistologica 19:245–261

    Google Scholar 

  • Gieskes WWC, Kraay GW (1975) The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Neth J Sea Res 9:166–196

    Article  Google Scholar 

  • Guillou L, Biegala I (2002) Different molecular techniques to examine life cycles of phytoplankton or HAB species. In: Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) Proceedings of the LIFEHAB workshop: life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, October 2001. Research in Enclosed Seas Series, pp 99–101

  • Gunkel J (1988) Zür Verbreitung von Phaeocystis pouchetii in Phytoplankton der Framstrasse ünter besonderer Berücksichtigung der Kolonie-bildung. PhD thesis, Kiel University, 118 pp

  • Hallegraeff GM (1983) Scale-bearing and loricate nanoplankton from the east Australian current. Bot Mar 26:493–515

    Article  Google Scholar 

  • Hamm CE, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Progr Ser 187:101–111

    Google Scholar 

  • Hamm FC (2000) Architecture, ecology and biogeochemistry of Phaeocystis colonies. J Sea Res 43:307–315

    Article  Google Scholar 

  • Hansen FC, van Boekel WHM (1991) Grazing pressure of the calanoid copepod Temora longicornis on a Phaeocystis dominated spring bloom in a Dutch tidal inlet. Mar Ecol Progr Ser 78:123–129

    Google Scholar 

  • Hansen FCR, Reckermann M, Klein Breteler WCM, Riegman R (1993) Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar Ecol Progr Ser 102:51–57

    Google Scholar 

  • Hoepffner N, Haas LW (1990) Electron microscopy of nanoplankton from the North Pacific Central Gyre. J Phycol 26:421–439

    Article  Google Scholar 

  • Houdan A, Billard C, Marie D, Not F, Saez AG, Young JR, Probert J (2004) Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: flow cytometric analysis of relative ploidy levels. Systemat Biodiv 4:453–465

    Google Scholar 

  • Jacobsen A (2002) Morphology, relative DNA content and hypothetical life cycle of Phaeocystis pouchetii (Prymnesiophyceae) with special emphasis on the flagellated cell type. Sarsia 87:338–349

    Article  Google Scholar 

  • Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterization of virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 32:923–927

    Article  Google Scholar 

  • Jacobsen A, Veldhuis MJW (2005) Growth characteristics of flagellated cells of Phaeocystis pouchetii revealed by diel changes in cellular DNA content. In: Veldhuis MJW, Wassmann P (eds) Harmful Algae, vol 4. pp 811–821

  • Jahnke J, Baumann M (1987) Differentiation between Phaeocystis pouchetii (Har.) Lagerheim and Phaeocystis globosa Scherffel. Colony shapes and temperature tolerances. Hydrobiol Bull 21:141–147

    Article  Google Scholar 

  • Jakobsen HH, Tang KW (2002) Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat Microb Ecol 27:261–273

    Google Scholar 

  • Jones PGW, Haq SM (1963). The distribution of Phaeocystis in the eastern Irish sea. J Cons Intern Expl Mer 28:8–20

    Google Scholar 

  • Kang SH, Lee S (1995) Antarctic phytoplankton assemblage in the western Bransfield Strait region, February 1993: composition, biomass, and mesoscale distributions. Mar Ecol Progr Ser 129:253–267

    Google Scholar 

  • Kashkin NI (1963). Materials on the ecology of Phaeocystis pouchetii (Hariot) Lagerheim, 1893 (Chrysophyceae) II. Habitat and specifications of biogeographical characteristics. Okeanologiya, Moscow 3:697–705

    Google Scholar 

  • Kayser H (1970) Experimental-ecological investigations on Phaeocystis pouchetii (Haptophyceae): cultivation and waste water test. Helgoländer Wiss. Meeresunt 20:195–212

    Article  Google Scholar 

  • Kondrashov AS, Crow JF (1991) Haploidy or diploidy: which is better? Nature 351:314–317

    Article  Google Scholar 

  • Kornmann P (1955) Beobachtungen an Phaeocystis-Kulturen. Helgoländer Wiss Meeresunt 5:218–233

    Article  Google Scholar 

  • Koski M, Dutz J, Klein Breteler WCM (2005). Selective grazing of Temora longicornis in different stages of a Phaeocystis globosa bloom – a mesocosm study. In: Veldhuis MJW, Wassmann P (eds) Harmful Algae 4:915–927

  • Lagerheim G (1893) Phæocystis, nov. gen., grundadt på Tetraspora Poucheti Har. Botaniska Notiser, pp 32–33

  • Lagerheim G (1896). Ueber Phæocystis Poucheti (Har.) Lagerh., eine Plankton-Flagellate. Öfversigt af K. Vetensk.-Akad. Förhanlingar, Stockholm 4:277–288

    Google Scholar 

  • Lancelot C, Mathot S (1985) Biochemical fractionation of primary production by phytoplakton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. Mar Biol 86:219–226

    Article  Google Scholar 

  • Lancelot C, Rousseau V (1994) Ecology of Phaeocystis: the key role of colony forms. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae, vol 51. Clarenton Press, Oxford, pp 229–245

    Google Scholar 

  • Lancelot C, Rousseau V (2002) Life cycle in Haptophyta. In: Garcés E, Zingone A, Montresor M., Reguera B, Dale B (eds) Proceedings of the LIFEHAB workshop: life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, October 2001, Research in Enclosed Seas Series, pp 88–90

  • Lancelot et al. (1991) Dynamics of Phaeocystis blooms in nutrient enriched coastal zones. In: Lancelot C, Billen G, Barth H (eds) Proceedings of the third workshop Plymouth, March 6–7, 1990, pp 106. Water Pollution Research report 23

  • Lancelot C, Keller MD, Rousseau V, Smith WO, Mathot S (1998) Autecology of the marine Haptophyte Phaeocystis sp. In: Anderson DM, Cembella AD, Hallagraeff GM (Eds) Physiological ecology of harmful algal blooms, vol. G 41. Springer-Verlag, Berlin, pp 209–224

    Google Scholar 

  • Lancelot C, Rousseau V, Schoemann V, Becquevort S (2002). On the ecological role of the different life forms of Phaeocystis. In: Garcés E, Zingone A, Montresor M., Reguera B, Dale B (eds) Proceedings of the workshop LIFEHAB: Life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, octobre 2001. Research in Enclosed Seas series, pp 71–75

  • Lange M, Chen Y-Q, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92

    Article  Google Scholar 

  • Larsen A (1999) Prymnesium parvum and P. patelliferum (Haptophyta) – one species. Phycologia 38:541–543

    Article  Google Scholar 

  • Larsen A, Edvardsen B (1998) Relative ploidy levels in Prymnesium parvum and P. patelliferum (Haptophyta) analyzed by flow cytometry. Phycologia 37(6):412–424

    Article  Google Scholar 

  • Lewis WM (1985). Nutrient scarcity as an evolutionary cause of haploidy. Am Nat 125:692–701

    Article  Google Scholar 

  • Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl sulphide and Phaeocystis: a review. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:41–53

  • Long JD, Hay ME (2006) When intraspecific exceeds interspecific variance: Effects of phytoplankton morphology and growth phase on copepod feeding and fitness. Limnol Oceanogr 51:988–996

    Article  Google Scholar 

  • Mable BK, Otto SP (1998) The evolution of life cycles with haploid and diploid phases. BioEssays 20:453–462

    Article  Google Scholar 

  • Marchant H, Thomsen HA (1994) Haptophytes in polar waters. In: Green JC, Leadbeater BSC (Eds). The haptophyte algae, vol 51. Clarenton Press, Oxford, pp 209–228

    Google Scholar 

  • Mathot S, Smith WOJ, Carlson CA, Garrison DL, Gowing MM, Vickers CL (2000) Carbon partitioning within Phaeocystis antarctica (prymnesiophyceae) colonies in the Ross Sea, Antarctica. J Phycol 36:1049–1056

    Article  Google Scholar 

  • Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33:199–212

    Google Scholar 

  • Medlin LK and Zingone A (this issue) A taxonomic review of the genus Phaeocystis. Biogeochemistry

  • Moestrup Ø (1979) Identification by electron microscopy of marine nanoplankton from New Zealand, including the description of four new species. N Z J Bot 17:61–95

    Google Scholar 

  • Moestrup Ø, Larsen J (1992) Potentially toxic phytoplankton. 1. Haptophyceae (Prymnesiophyceae). In: Lindley JS (ed) ICES identification leaflets for plankton No 179. International Council for the Exploration of the Sea, Copenhagen, pp 11

    Google Scholar 

  • Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, Long JD (this issue) Zooplankton grazing on Phaeocystis: a quantitative status and future challenges. Biogeochemistry. this volume

  • Noordkamp JB, Gieskes WWC, Gottschal JC, Forney LJ, Van Rijssel M (2000) Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. J Sea Res 43:287–296

    Article  Google Scholar 

  • Paasche E, Edvardsen B, Eikrem W (1990) A possible alternate stage in the life cycle of Chrysochromulina polylepis Manton et Parke (Prymnesiophyceae). Nova Hedwigia Beihefte 100:91–99

    Google Scholar 

  • Parke M, Green JC, Manton I (1971) Observations on the fine structure of zoids of the genus Phaeocystis (Haptophyceae). J Mar Biol Assoc UK 51:927–941

    Article  Google Scholar 

  • Peperzak L (1993) Daily irradiance governs growth rate and colony formation of Phaeocystis (Prymnesiophyceae). J Plankton Res 15:809–821

    Article  Google Scholar 

  • Peperzak L, Colijn F, Gieskes WWC, Peeters JCH (1998) Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis. J Plankton Res 20:517–537

    Article  Google Scholar 

  • Peperzak L, Colijn F, Vrieling EG, Gieskes WWC, Peeters JCH (2000a) Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae): a hypothesis for their position in the life cycle. J Plankton Res 22:2181–2203

    Article  Google Scholar 

  • Peperzak L, Duin RMN, Colijn F, Gieskes WWC (2000b) Growth and mortality of flagellates and non-flagellate cells of Phaeocystis globosa (Prymnesiophyceae). J Plankton Res 22:107–119

    Article  Google Scholar 

  • Ploug H, Stolte W, Jørgensen BB (1999) Diffusive boundary layers of the colony-forming plankton alga, Phaeocystis sp. – implications for nutrient uptake and cellular growth. Limnol Oceanogr 44:1959–1967

    Article  Google Scholar 

  • Putt M, Miceli G, Stoecker DK (1994) Association of bacteria with Phaeocystis sp. in McMurdo Sound, Antarctica. Mar Ecol Progr Ser 105:179–189

    Google Scholar 

  • Riegman R, Noordeloos A, Cadée GC (1992) Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar Biol 112:479–484

    Article  Google Scholar 

  • Rousseau V, Mathot S, Lancelot C (1990) Calculating carbon biomass of Phaeocystis sp. from microscopic observations. Mar Biol 107:305–314

    Article  Google Scholar 

  • Rousseau V, Vaulot D, Casotti R, Cariou V, Lenz J, Gunkel J, Baumann M (1994) The life cycle of Phaeocystis (Prymnesiophyceae): evidence and hypotheses. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:23–40

  • Schapira M (2005) Dynamique spatio-temporelle de Phaeocystis globosa en Manche Orientale: effets de la turbulence et des apports sporadiques en sels nutritifs. PhD Thesis. Université de Lille, France, 316 pp

  • Schapira M, Seuront L, Gentilhomme V (2006) Effects of small-scale turbulence on Phaeocystis globosa (Prymnesiophyceae) growth and life cycle. J Exp Mar Biol Ecol 335(1):27–38

    Article  Google Scholar 

  • Scherffel A (1899) Phaeocystis globosa n. sp. (Vorläufige Mittheilung). Berichte der Deutschen Botanischen Gesellschaft 17:317–318

    Google Scholar 

  • Scherffel A (1900) Phaeocystis globosa nov. spec. nebst einigen Betrachtungen über die Phylogenie niederer, insbesondere brauner Organismen. Wissenschaftliche Meeresuntersuchungen Abteilung Helgoland NF Bd 4:1–29

    Google Scholar 

  • Schoemann V, Wollast R, Chou L, Lancelot C (2001) Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies. Limnol Oceanogr 46:1065–1076

    Article  Google Scholar 

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Article  Google Scholar 

  • Smith WOJr, Dennett MR, Mathot S, Caron D (2003) The temporal dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea. Deep-Sea Res II 50:605–617

    Article  Google Scholar 

  • Sournia A (1988) Phaeocystis (Prymnesiophyceae): How many species? Nova Hedwigia 47:211–217

    Google Scholar 

  • Sukhanova IN, Flint MV (2001) Phaeocystis pouchetii at the Eastern Bering Sea Shelf. Oceanology 41:75–85

    Google Scholar 

  • Tang KW (2003). Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. J Plankt Res 25(7):831–842

    Article  Google Scholar 

  • Tang KW, Jacobsen HH, Visser AW (2001) Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic intercations among grazers. Limnol Oceanogr 46(8):1860–1870

    Article  Google Scholar 

  • Turner JT, Ianora A, Esposito F, Carotenuto Y, Miralto A (2002). Zooplankton feeding ecology: does a diet of Phaeocystis support good copepod grazing, survival, egg production and egg hatching success. J Plankton Res 24(11):1185–1195

    Article  Google Scholar 

  • Valero M, Richerd S, Perrot V, Destombe C (1992) Evolution of alternation of haploid and diploid phases in life cycles. Trends Ecol Evol 7(1):25–29

    Article  Google Scholar 

  • van Boekel WHM, Veldhuis MJW (1990) Regulation of alkaline phosphatase synthesis in Phaeocystis sp. Mar Ecol Progr Ser 61:281–289

    Google Scholar 

  • van Rijssel M, Hamm CE, Gieskes WWC (1997) Phaeocystis globosa (Prymnesiophyceae) colonies: hollow structures built with small amounts of polysaccharides. Eur J Phycol 32:185–192

    Google Scholar 

  • Vaulot D, Birrien J-L, Marie D, Casotti R, Veldhuis MJ, Kraay GW, Chrétiennot-Dinet M-J (1994) Morphology, ploidy, pigment composition and genome size of cultured strains of Phaeocystis (Prymnesiophyceae). J Phycol 30:1022–1035

    Article  Google Scholar 

  • Veldhuis MJW, Admiraal W (1985) Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effect on the measurement of excretion rate. Mar Ecol Progr Ser 26:301–304

    Google Scholar 

  • Veldhuis MJW, Admiraal W (1987) Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar Biol 95:47–54

    Article  Google Scholar 

  • Veldhuis MJW, Colijn F, Venekamp LAH (1986) The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:37–48

    Article  Google Scholar 

  • Veldhuis MJW, Colijn F, Admiraal W (1991) Phosphate utilization in Phaeocystis pouchetii (Haptophyceae). Mar Ecol 12:53–62

    Google Scholar 

  • Veldhuis MJW, Brussaard CPD, Noordeloos AAM (2005) Living in a Phaeocystis colony: a way to be successful algal species. In: Veldhuis MJW, Wassmann P (eds) Harmful Algae 4:841–858

    Google Scholar 

  • Verity PG (2000). Grazing experiments and model simulations of the role of mesozooplankton in Phaeocystis food webs. J Sea Res 43:317–344

    Article  Google Scholar 

  • Verity PG, Smayda TJ (1989) Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp. (Copepoda): Ingestion, egg production, and growth of nauplii. Mar Biol 100:161–171

    Article  Google Scholar 

  • Verity PG, Medlin LK (2003) Observations on colony formation by the cosmopolitan phytoplankton genus Phaeocystis. J Mar Syst 423:153–164

    Article  Google Scholar 

  • Verity PG, Villareal TA, Smayda TJ (1988a) Ecological investigations of blooms of colonial Phaeocystis pouchetii. I. Abundance, biochemical composition and metabolic rates. J Plankton Res 10:219–248

    Article  Google Scholar 

  • Verity PG, Villareal TA, Smayda TJ (1988b) Ecological investigations of blooms of colonial Phaeocystis pouchetii. II. The role of life cycle phenomena in bloom termination. J Plankton Res 10:749–766

    Article  Google Scholar 

  • Wassmann P, Ratkova T, Reigstad M (2005) The contribution of single and colonial cells of Phaeocystis pouchetii to spring and summer blooms in the north-eastern North Atlantic. In: Veldhuis MJW, Wassmann P (eds) Harmful algae, vol 4. pp 823–840

  • Weisse T, Scheffel-Möser U (1990). Growth and grazing loss rates in single-celled Phaeocystis sp. (Prymnesiophyceae). Mar Biol 106:153–158

    Article  Google Scholar 

  • Weisse T, Grimm N, Hickel W, Martens P (1986) Dynamics of Phaeocystis pouchetii blooms in the Wadden Sea of Sylt (German Bight, North Sea). Est Coast Shelf Sc 23:171–182

    Article  Google Scholar 

  • Weisse T, Tande K, Verity P, Hansen F, Gieskes W (1994) The trophic significance of Phaeocystis blooms. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:67–79

  • Whipple SJ, Patten BC, Verity PG (2005) Colony growth and evidence for colony multiplication in Phaeocystis pouchetii (Prymnesiophyceae) isolated from mesocosm blooms. J Plank Res 27:495–501

    Article  Google Scholar 

  • Whipple SJ, Patten BC, Verity PG, Nejstgaard JC, Long JD, Anderson JT, Jacobsen A, Larsen A, Martinez-Martinez A, and Borrett, SR (this issue) Gaining integrated understanding of Phaeocystis spp. (Prymnesiophyceae) life cyle through model-driven laboratory and mesocosm studies. Biogeochemistry

  • Zingone A, Chrétiennot-Dinet M-J, Lange M, Medlin L (1999) Morphological and genetic characterization of Phaeocystis cordata and P. Jahnii (Pymnesiophyceae), two new species from the Mediterranean Sea. J Phycol 35:1322–1337

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to François Lantoine from the laboratory of Banyuls (France) for providing the electron microscopy photographs of the diploid flagellate of Phaeocystis globosa. We also thank J. Nejstgaard for his helpful comments on grazing issues, and C. Lancelot for fruitful discussion on life cycle. We thank B. Patten for detailed recommendations of an early draft and three anonymous reviewers for their constructive comments. The present review is a contribution to the SCOR WG 120 “Phaeocystis, major link in the biochemical cycling of climate-relevant elements.” V. Rousseau has been supported by the advanced modelling and research on eutrophication (AMORE) project of the Belgian Programme “Scientific Support Plan for a Sustainable Development Policy—Sustainable Management of the North Sea” funded by the Belgian Science Policy under contract EV/11/19. P. Verity and S. Whipple have been supported by U.S. National Science Foundation grant OPP-00-83381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Rousseau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rousseau, V., Chrétiennot-Dinet, MJ., Jacobsen, A. et al. The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology. Biogeochemistry 83, 29–47 (2007). https://doi.org/10.1007/s10533-007-9085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9085-3

Keywords

  • Ecological niche
  • Haploid–diploid
  • Life cycle stages
  • Morphotype
  • Phaeocystis species
  • Sexual processes