Skip to main content

Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance

Abstract

We have carried out field and laboratory experiments to examine the iron requirements of colonial Phaeocystis antarctica in the Ross Sea. In December 2003, we performed an iron/light-manipulation bioassay experiment in the Ross Sea polynya, using an algal assemblage dominated by colonial Phaeocystis antarctica, collected from surface waters with an ambient dissolved Fe concentration of ∼0.4 nM. Results from this experiment suggest that P. antarctica growth rates were enhanced at high irradiance (∼50% of incident surface irradiance) but were unaffected by iron addition, and that elevated irradiance mediated a significant decrease in cellular chlorophyll a content. We also conducted a laboratory iron dose–response bioassay experiment using a unialgal, non-axenic strain of colonial P. antarctica and low-iron (<0.2 nM) filtered seawater, both collected from the Ross Sea polynya in December 2003. By using rigorous trace-metal clean techniques, we performed this dose–response iron-addition experiment at ∼0°C without using organic chelating reagents to control dissolved iron levels. At the relatively low irradiance of this experiment (∼20 μE m−2 s−1), estimated nitrate-specific growth rate as a function of dissolved iron concentration can be described by a Monod relationship, yielding a half-saturation constant with respect to growth of 0.45 nM dissolved iron. This value is relatively high compared to reported estimates for other Antarctic phytoplankton. Our results suggest that seasonal changes in the availability of both iron and light play critical roles in limiting the growth and biomass of colonial Phaeocystis antarctica in the Ross Sea polynya.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anderson MA, Morel FMM (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol Oceanogr 27:789–813

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL (2004) Annual changes in sea ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep-Sea Res Part II 51:117–138

    Article  Google Scholar 

  • Arrigo KR, Tagliabue A (2005) Iron in the Ross Sea, Part II: impact of discrete iron addition strategies. J Geophys Res 110 (C03010). DOI: 10.1029/2004JC002568

  • Arrigo KR, Weiss AM, Smith WO (1998) Physical forcing of phytoplankton dynamics in the southwestern Ross Sea. J Geophys Res 103(C1):1007–1022

    Article  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Article  Google Scholar 

  • Arrigo KR, Worthen DL, Robinson DH (2003) A coupled ocean-ecosystem model of the Ross Sea. Part 2: iron regulation of phytoplankton taxonomic variability and primary production. J Geophys Res 108(C7):3231. DOI: 10.1029/2001JC000856

    Google Scholar 

  • Blain S, Sedwick PN, Griffiths FB, Queguiner B, Bucciarelli E, Fiala M, Pondaven P, Treguer P (2002) Quantification of algal iron requirements in the Subantarctic Southern Ocean (Indian sector). Deep-Sea Res Part II 49:3255–3273

    Article  Google Scholar 

  • Boyd PW (2002) Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38:844–861

    Article  Google Scholar 

  • Boye M, Nishioka J, Croot PL, Laan P, Timmermans KR, de Baar HJW (2005) Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96:257–271

    Article  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese and iron. Limnol Oceanogr 28:1182–1198

    Google Scholar 

  • Brown MT, Landing WM, Measures CI (2005) Dissolved and particulate Fe in the western and central North Pacific: results from the 2002 IOC cruise. Geochem Geophys Geosys 6. DOI: 10.1029/2004GC000893

  • Coale KH, Fitzwater SE, Gordon RM, Johnson KS, Barber RT (1996) Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379:621–624

    Article  Google Scholar 

  • Coale KH, Wang X, Tanner SJ, Johnson KS (2003) Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep-Sea Res Part II 50:635–653

    Article  Google Scholar 

  • Coale KH, Gordon RM, Wang X (2005) The distribution and behavior of dissolved and particulate iron and zinc in the Ross Sea and Antarctic circumpolar current along 170°W. Deep-Sea Res Part I 52:295–318

    Article  Google Scholar 

  • De Baar HJW, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Tréguer PJ (1990) On iron limitationof the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Progr Ser 65:105–122

    Google Scholar 

  • DiTullio GR, Geesey ME (2002) Photosynthetic pigments in marine algae and bacteria. In: Bitton G (ed) The encyclopedia of environmental microbiology. John Wiley & Sons, pp 2453–2470

  • DiTullio GR, Smith WO (1995) Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica. Deep-Sea Res Part I 42:873–892

    Article  Google Scholar 

  • DiTullio GR, Smith WO Jr (1996) Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea. J Geophys Res 101:18467–18477

    Article  Google Scholar 

  • DiTullio GR, Hutchins DA, Bruland KW (1993) Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical north Pacific Ocean. Limnol Oceanogr 38:495–508

    Google Scholar 

  • DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry JP, VanWoert ML, Dunbar RB (2000) Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:595–598

    Article  Google Scholar 

  • DiTullio GR, Garcia NS, Riseman SF, Sedwick PN (2007) Effects of iron concentration on pigment composition in Phaeocystis antarctica. Biogeochemistry (this issue)

  • Eldridge ML, Trick CG, Alm MB, DiTullio GR, Rue EL, Bruland KW, Hutchins DA, Wilhelm SW (2004) Phytoplankton community response to a manipulation of bioavailable iron in HNLC waters of the subtropical Pacific Ocean. Aquat Microb Ecol 35:79–91

    Google Scholar 

  • Fitzwater SE, Coale KH, Gordon RM, Johnson KS, Ondrusek ME (1996) Iron deficiency and phytoplankton growth in the Equatorial Pacific. Deep-Sea Res Part II 43:995–1015

    Article  Google Scholar 

  • Fitzwater SE, Johnson KS, Gordon RM, Coale KH, Smith WO (2000) Trace metal concentrations in the Ross Sea and their relationship with nutrients and growth. Deep-Sea Res Part II 47:3159–3179

    Article  Google Scholar 

  • Gerringa LJA, de Baar HJW, Timmermans KR (2000) A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar Chem 68:335–346

    Article  Google Scholar 

  • Gibson JAE, Garrick RC, Burton HR, McTaggart AR (1990) Dimethylsulfide and the alga Phaeocystis pouchetii in Antarctic coastal waters. Mar Biol 104:339–346

    Article  Google Scholar 

  • Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54

    Article  Google Scholar 

  • Gordon LI, Codispoti LA, Jennings JC Jr, Millero FJ, Morrison JM, Sweeney C (2000) Seasonal evolution of hydrographic properties in the Ross Sea, Antarctica, 1996–1997. Deep-Sea Res Part II 47:3095–3117

    Article  Google Scholar 

  • Gregg WW, Carder KL (1990) A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol Oceanogr 35:1657–1675

    Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Google Scholar 

  • Hiscock MR (2004) The regulation of primary productivity in the Southern Ocean. Ph.D. Thesis, Duke University, 174 pp

  • Hong Y, Smith WO, White A-M (1997) Studies on transparent exopolymer particles (TEP) produced by Phaeocystis sp. (Prymnesiophyceae) in the Ross Sea, Antarctica. J Phycol 33:368–376

    Article  Google Scholar 

  • Hudson RJM, Morel FMM (1989) Distinguishing between extracellular and intracellular iron in marine-phytoplankton. Limnol Oceanogr 34:1113–1120

    Google Scholar 

  • Hutchins DA, Franck VM, Brzezinski MA, Bruland KW (1999) Inducing phytoplankton iron limitation in iron-replete coastal waters with a strong chelating ligand. Limnol Oceanogr 44(4):1009–1018

    Google Scholar 

  • Hutchins DA, Sedwick PN, DiTullio GR, Boyd PW, Quéguiner B, Griffiths FB, Crossley C (2001) Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean Experimental results from the SAZ project. J Geophys Res 106(C12):31559–31572

    Article  Google Scholar 

  • Knap A, Michaels A, Close A, Ducklow H, Dickson A (1996) Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. JGOFS Report 19, 170 pp

  • Kuma K, Nishioka J, Katsuhiko M (1996) Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol Oceanogr 41:396–407

    Article  Google Scholar 

  • Kuma K, Katsumoto A, Kawakami H, Takatori F, Matsunaga K (1998) Spatial variability of Fe(III) hydroxide solubility in the water column of the northern North Pacific Ocean. Deep-Sea Res Part I 45:91–113

    Article  Google Scholar 

  • Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54

    Article  Google Scholar 

  • Maldonado MT, Price NM (1999) Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Res Part II 46:2447–2473

    Article  Google Scholar 

  • Maldonado MT, Price NM (2001) Reduction and transport of organically bound iron by Thalassiosira oceanica (bacillariophyceae). J Phycol 37:298–310

    Article  Google Scholar 

  • Maldonado MT, Strzepek RF, Sander S, Boyd PW (2005) Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters. Global Biogeochem Cycles 19. DOI: 10.1029/2005GB002481

  • Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits plankton growth in Antarctic waters. Global Biogeochem Cycles 4:5–12

    Article  Google Scholar 

  • Matrai PA, Vernet M, Hood R, Jennings A, Brody E, Saemundsdottir S (1995) Light dependence of carbon and sulfur production by polar clones of the genus Phaeocystis. Mar Biol 124:157–167

    Article  Google Scholar 

  • Mathot S, Smith WO Jr, Carlson CA, Garrison DL (2001) Estimate of Phaeocystis sp. carbon biomass: methodological problems related to the mucilaginous nature of the colonial matrix. J Phycol 36:1049–1056

    Article  Google Scholar 

  • Measures CI, Yuan J, Resing JA (1995) Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection. Mar Chem 50:3–12

    Article  Google Scholar 

  • Moisan TA, Mitchell BG (1999) Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation. Limnol Oceanogr 44:247–258

    Google Scholar 

  • Nakabayashi S, Kuma K, Sasaoka K, Saitoh S, Mochizuki M, Shiga N, Kusakabe M (2002) Variation in iron(III) solubility and iron concentration in the northwestern North Pacific Ocean. Limnol Oceanogr 47:885–892

    Article  Google Scholar 

  • Olson RJ, Sosik HM, Chekalyuk AM, Shalapyonok A (2000) Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses. Deep-Sea Res Part II 47:3179–3200

    Article  Google Scholar 

  • Palmisano AC, SooHoo JB, SooHoo SL, Kottmeier ST, Craft LL, Sullivan CW (1986) Photoadaptation in Phaeocystis pouchetii advected beneath annual sea ice in McMurdo Sound, Antarctica. J Plankton Res 8:891–906

    Article  Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathway. New Phytol 116:1–17

    Article  Google Scholar 

  • Robinson DH, Arrigo KR, DiTullio GR, Lizotte MP (2003) Evaluating photosynthetic carbon fixation during Phaeocystis antarctica blooms. In: DiTullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea. Antarct Res Ser 78:77–91

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138

    Article  Google Scholar 

  • Rue EL, Bruland KW (1997) The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol Oceanogr 42:901–910

    Google Scholar 

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Article  Google Scholar 

  • Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett 24:2515–2518

    Article  Google Scholar 

  • Sedwick PN, Edwards PR, Mackey DJ, Griffiths FB, Parslow JS (1997) Iron and manganese in surface waters of the Australian subantarctic region. Deep-Sea Res Part I 44:1239–1253

    Article  Google Scholar 

  • Sedwick PN, DiTullio GR, Mackey DJ (2000) Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J Geophys Res 105(C5):11321–11336

    Article  Google Scholar 

  • Sedwick PN, Blain S, Queguiner B, Griffiths FB, Fiala M, Bucciarelli E, Denis M (2002) Resource limitation of phytoplankton growth in the Crozet Basin, Subantarctic Southern Ocean. Deep-Sea Res Part II 49:3327–3349

    Article  Google Scholar 

  • Sedwick PN, Church TM, Bowie AR, Marsay CM, Ussher SJ, Achilles KM, Lethaby PJ, Johnson RJ, Sarin MM, McGillicuddy DJ (2005) Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer: Eolian imprint, spatiotemporal variability, and ecological implications. Global Biogeochem Cycles 19. DOI: 10.1029/2004GB002445

  • Smith WO Jr, Gordon LI (1997) Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys Res Lett 24:233–236

    Article  Google Scholar 

  • Smith WO, van Hilst CM (2003) Effects of assemblage composition on the temporal dynamics of carbon and nitrogen uptake in the Ross Sea. In: DiTullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea. Antarct Res Ser 78:197–208

  • Smith WO Jr, Codispoti LA, Nelson DM, Manley T, Buskey EJ, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high latitude ocean carbon cycle. Nature 352:514–516

    Article  Google Scholar 

  • Smith WO, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res Part II 47:3119–3140

    Article  Google Scholar 

  • Smith WO Jr, Dennett MR, Mathot S, Caron DA (2003) The temporal dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea. Deep-Sea Res Part II 50:605–617

    Article  Google Scholar 

  • Soria-Dengg S, Horstmann U (1995) Ferrioxamines B and E as iron sources for the marine diatom Phaeodactylum tricornutum. Mar Ecol Progr Ser 127:269–277

    Google Scholar 

  • Stefels J, van Leeuwe MA (1998) Effects of iron and light stress on the biochemical composition of antarctic Phaeocystis sp. (prymnesiophyceae). I. Intracellular dmsp concentrations. J Phycol 34:486–495

    Article  Google Scholar 

  • Sunda WG, Swift DG, Huntsman SA (1991) Low iron requirement for growth in oceanic phytoplankton. Nature 351:55–57

    Article  Google Scholar 

  • Sunda WG, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206

    Article  Google Scholar 

  • Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392

    Article  Google Scholar 

  • Sweeney C (2003) The annual cycle of surface CO2 and O2 in the Ross Sea: a model for gas exchange on the continental shelves of Antarctica. In: DiTullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea. Antarct Res Ser 78:295–312

  • Sweeney C, Smith WO, Hales B, Hansell DA, Carlson CA, Codispoti LA, Gordon LI, Millero FJ, Takahashi T (2000) Nutrient and TCO2 uptake and export ratios in the Ross Sea. Deep-Sea Res Part II 47:3395–3422

    Article  Google Scholar 

  • Tagliabue A, Arrigo KR (2005) Iron in the Ross Sea, Part I: impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry. J Geophys Res 110(C03009). DOI: 10.1029/2004JC002531

  • Tang D, Morel FMM (2006) Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Mar Chem 98:18–30

    Article  Google Scholar 

  • Timmermans KR, Gerringa LJA, De Baar HJW, van der Wagt B, Veldhuis MJW, De Jong JTM, Croot PL (2001) Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnol Oceanogr 46:260–266

    Google Scholar 

  • Timmermans KR, van der Wagt B, de Baar HJW (2004) Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol Oceanogr 49:2141–2151

    Article  Google Scholar 

  • Tovar-Sanchez A, Sanudo-Wilhelmy SA, Garcia-Vargas M, Weaver RS, Popels LC, Hutchins DA (2003), A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Mar Chem 82:91–99

    Article  Google Scholar 

  • Twining BS, Baines SB, Fisher NS, Maser J, Vogt S, Jacobsen C, Tovar-Sanchez A, Sanudo-Wilhelmy SA (2003) Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe. Anal Chem 75:3806–3816

    Article  Google Scholar 

  • Van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157

    Article  Google Scholar 

  • Van Hilst CM, Smith WO (2002) Photosynthesis/irradiance relationships in the Ross Sea, Antarctica and their control by phytoplankton assemblage composition and environmental factors. Mar Ecol Progr Ser 226:1–12

    Google Scholar 

  • Van Leeuwe MA, Stefels J (1998) Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment Composition. J Phycol 34:496–503

    Article  Google Scholar 

  • Wells ML (1999), Manipulating iron availability in nearshore waters. Limnol Oceanogr 44:1002–1008

    Article  Google Scholar 

  • Wells ML, Price NM, Bruland KW (1994) Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters. Limnol Oceanogr 39:1481–1486

    Google Scholar 

  • Worthen DL, Arrigo KR (2003) A coupled ocean-ecosystem model of the Ross Sea. Part 1: Interannual variability of primary production and phytoplankton community structure. In: DiTullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea. Antarct Res Ser 78:93–105

  • Wu J, Luther GW III (1995) Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar Chem 50:159–177

    Article  Google Scholar 

  • Wu J, Boyle E, Sunda W, Wen L-S (2001) Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 293:847–849

    Article  Google Scholar 

  • Zivin JA, Waud DR (1982) How to analyze binding, enzyme and uptake data: the simplest case, a single phase. Life Sci 30:1407–1422

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the officers and crew of the RV Nathaniel B. Palmer, and Raytheon Polar Services Company personnel for their outstanding support in the field. We thank two anonymous reviewers for their helpful criticisms and suggestions. This work has benefited from discussions with Veronique Schoemann, Walker Smith, and Alessandro Tagliabue. Funding for this research was provided by US National Science Foundation grants OPP-0230559 (PNS), OPP-0230513 (GRD) and DGE-0139313 (NSG through M. Vansickle and G. Tempel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Sedwick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sedwick, P.N., Garcia, N.S., Riseman, S.F. et al. Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance. Biogeochemistry 83, 83–97 (2007). https://doi.org/10.1007/s10533-007-9081-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9081-7

Keywords

  • Iron
  • Light
  • Phaeocystis antarctica
  • Ross Sea