Skip to main content
Log in

Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Four whole-lake inorganic 13C addition experiments were conducted in lakes of differing trophic status. Inorganic 13C addition enriched algal carbon in 13C and changed the \(\delta^{13}\)C-DOC by +1.5‰ to +9.5‰, depending on the specific lake. This change in \(\delta^{13}\)C-DOC represented a significant input of algal DOC that was not completely consumed by bacteria. We modeled the dynamics in \(\delta^{13}\)C-DOC to estimate the fluxes of algal and terrestrial carbon to and from the DOC pool, and determine the composition of the standing stock. Two experiments in lightly stained, oligotrophic lakes indicated that algal production was the source of about 20% of the DOC pool. In the following year, the experiment was repeated in one of these lakes under conditions of nutrient enrichment, and in a third, more humic lake. Algal contributions to the DOC pool were 40% in the nutrient enriched lake and 5% in the more humic lake. Spectroscopic and elemental analyses corroborated the presence of increased algal DOC in the nutrient enriched lake. Natural abundance measurements of the \(\delta^{13}\)C of DOC in 32 lakes also revealed the dual contributions of both terrestrial and algal carbon to DOC. From these results, we suggest an approach for inferring the contribution of algal and terrestrial DOC using easily measurable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitkenhead-Peterson J.A., McDowell W.H., Neff J.C. (2003). Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In: Findlay S.E.G., Sinsabaugh R.L., (eds). Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego, pp. 25–70

    Google Scholar 

  • Bade D. L. 2004. Ecosystem carbon cycles: whole-lake fluxes estimated with multiple isotopes. Ph.D., University of Wisconsin-Madison.

  • Bade D.L., Carpenter S.R., Cole J.J., Hanson P.C., Hesslein R.H. (2004). Controls of \(\delta^{13}\)C-DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnol. Oceanogr. 49:1160–1172

    Article  Google Scholar 

  • Bade D.L., Pace M.L., Cole J.J. and Carpenter S.R. (2006). Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models? Aquat. Sci. 68: 142–153

    Article  Google Scholar 

  • Baines S.B., Pace M.L. (1991). The production of dissolved organic-matter by phytoplankton and its importance to bacteria – patterns across marine and fresh- water systems. Limnol. Oceanogr. 36:1078–1090

    Google Scholar 

  • Benner R. and Biddanda B. (1998). Photochemical transformations of surface and deep marine dissolved organic matter: effects on bacterial growth. Limnol. Oceanogr. 43:1373–1378

    Article  Google Scholar 

  • Bertilsson S., Jones J.B. (2003). Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay S.E.G., Sinsabaugh R.L. (eds). Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego, pp. 3–24

    Google Scholar 

  • Biddanda B. and Benner R. (1997). Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 42:506–518

    Article  Google Scholar 

  • Bower P.M., Kelly C.A., Fee E.J., Shearer J.A., Declercq D.R., Schindler D.W. (1987). Simultaneous measurement of primary production by whole-lake and bottle radiocarbon additions. Limnol. Oceanogr. 32: 299–312

    Google Scholar 

  • Boyd T.J., Osburn C.L. (2004). Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar. Chem. 89:189–210

    Article  Google Scholar 

  • Canham C.D., Pace M.L., Papaik M.J., Primack A.G.B., Roy K.M., Maranger R.J., Curran R.P., Spada D.M. (2004). A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol. Appl. 14:839–854

    Google Scholar 

  • Caraco N.F. and Cole J.J. 2004. When terrestrial organic matter is sent down the river: importance of allochthonous C inputs to the metabolism in lakes and rivers. In: Polis G.A., Power M.E. and Huxley G.R. (eds), Food Webs at the Landscape Level. University of Chicago Press, pp. 301–316.

  • Carpenter S.R., Cole J.J., Hodgson J.R., Kitchell J.F., Pace M.L., Bade D., Cottingham K.L., Essington T.E., Houser J.N., and Schindler D.E. (2001). Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol. Monogr. 71:163–186

    Article  Google Scholar 

  • Carpenter S.R., Cole J.J., Kitchell J.F., Pace M.L. (1998). Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnol. Oceanogr. 43:73–80

    Article  Google Scholar 

  • Carpenter S.R., Cole J.J., Pace M.L., Van de Bogert M., Bade D.L., Bastviken D., Gille C.M., Hodgson J.R., Kitchell J.F., Kritzberg E.S. (2005). Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–2750

    Google Scholar 

  • Carpenter S.R., Kitchell J.F. (1993). The Trophic Cascade in Lakes. Cambridge University Press, Cambridge,

    Google Scholar 

  • Cole J.J., Carpenter S.R., Kitchell J.F., and Pace M.L. (2002). Pathways of organic carbon utilization in small lakes: results from a whole-lake C-13 addition and coupled model. Limnol. Oceanogr. 47:1664–1675

    Article  Google Scholar 

  • Cole J.J., Findlay S., and Pace M.L. (1988). Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43:1–10

    Google Scholar 

  • Cole J.J., McDowell W.H., Likens G.E. (1984). Sources and molecular weight of “dissolved” organic carbon in an oligrotrophic lake. Oikos 42:1–9

    Article  Google Scholar 

  • Cole J.J., and Pace M.L. (1998). Hydrologic variability of small, Northern Michigan lakes measured by the addition of tracers. Ecosystems 1:310–320

    Article  Google Scholar 

  • Cole J.J., Pace M.L., Carpenter S.R., Kitchell J.F. (2000). Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol. Oceanogr. 45:1718–1730

    Article  Google Scholar 

  • del Giorgio P.A., Peters R.H. (1994). Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissloved organic carbon. Limnol. Oceanogr. 39:772–787

    Article  Google Scholar 

  • Dillon P.J., Molot L.A. (1997). Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42

    Article  Google Scholar 

  • Efron B., Tibshirani R.J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York

    Google Scholar 

  • Fry B., Hopkinson C.S., Nolin A. (1996). Long-term decomposition of DOC from experimental diatom blooms. Limnol. Oceanogr. 41:1344–1347

    Article  Google Scholar 

  • Fry B., Hopkinson C.S., Nolin A., Wainright S.C. (1998). 13C/12C composition of marine dissolved organic carbon. Chem. Geol. 152:113–118

    Article  Google Scholar 

  • Gergel S.E., Turner M.G., Kratz T.K. (1999). Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol. Appl. 9:1377–1390

    Article  Google Scholar 

  • Gorham E., Dean W.E., Sanger J.E. (1983). The chemical compostion of lakes in the north-central United States. Limnol. Oceanogr. 28:287–301

    Google Scholar 

  • Granéli W., Lindell M., Tranvik L. (1996). Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr. 41:698–706

    Article  Google Scholar 

  • Hanson P.C., Bade D.L., Carpenter S.R., Kratz T.K. (2003). Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnol. Oceanogr. 48:1112–1119

    Article  Google Scholar 

  • Hesslein R.H., Broecker W.S., Quay P.D., Schindler D.W. (1980). Whole-lake radiocarbon experiment in an oligotrophic lake at the Experimental Lakes Area, northwestern Ontario. Can. J. Fish. Aquat. Sci. 37:454–463

    Google Scholar 

  • Hood E., McKnight D.M. and Williams M.W. 2003. Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States. Water Resour. Res. 39, 1188, doi:10.1029/2002WR001738.

  • Houser J.N., Bade D.L., Cole J.J., Pace M.L. (2003). The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and photosynthetic reduction. Biogeochemistry 64:247–269

    Article  Google Scholar 

  • Jackson T.A., Hecky R.E. (1980). Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can. J. Fish. Aquat. Sci. 37:2300–2317

    Article  Google Scholar 

  • Johnson W.E., Hasler A.D. (1954). Rainbow trout production in dystrophic lakes. J. Wildl. Manage. 18:113–134

    Article  Google Scholar 

  • Jones R.I., Grey J., Sleep D., Arvola L. (1999). Stable isotope analysis of zooplankton carbon nutrition in humic lakes. Oikos 86:97–104

    Article  Google Scholar 

  • Karlsson J., Jonsson A., Meili M., Jansson M. (2003). Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol. Oceanogr. 48:269–276

    Article  Google Scholar 

  • Kirchman D.L., Suzuki Y., Garside C., Ducklow H.W. (1991). High turnover rates of dissolved organic-carbon during a spring phytoplankton bloom. Nature 352:612–614

    Article  Google Scholar 

  • Kortelainen P. (1993). Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can. J. Fish. Aquat. Sci. 50:1477–1483

    Google Scholar 

  • Kritzberg E. 2000. Origin and utilization of organic carbon pools in lakes differing in humic content and lake trophy. M.S. Thesis, Lund University, Lund, Sweden.

  • Kritzberg E.S., Cole J.J., Pace M.L., Graneli W. (2005). Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs?. Aquat. Microb. Ecol. 38:103–111

    Google Scholar 

  • Kritzberg E., Cole J.J., Pace M.L., Granéli W., Bade D.L. (2004). Autochthonous versus allochthonous carbon sources to bacteria: results from whole-lake 13C addition experiments. Limnol. Oceanogr. 49:588–596

    Article  Google Scholar 

  • Lajtha K., Michener R.H. (1994). Sources and variations in the stable isotopic composition of plants. In: Lajtha K., Michener R.H. (eds). Stable Isotopes in Ecology and Environmental Science. Blackwell, Boston, pp. 1–21

    Google Scholar 

  • Likens G.E. eds. (1985). An Ecosystem Approach to Aquatic Ecology: Mirror Lake and Its Environment. Springer-Verlag, New York

    Google Scholar 

  • Lindell M.J., Granéli W., Tranvik L.J. (1995). Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol. Oceanogr. 40:195–199

    Article  Google Scholar 

  • McKnight D.M., Andrews E.D., Spaulding S.A., Aiken G.R. (1994). Aquatic fulvic acids in algal-rich antarctic ponds. Limnol. Oceanogr. 39:1972–1979

    Article  Google Scholar 

  • McKnight D.M., Boyer E.W., Westerhoff P.K., Doran P.T., Kulbe T., Andersen D.T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46:38–48

    Article  Google Scholar 

  • McKnight D.M., Harnish R., Wershaw R.L., Baron J.S., Schiff S. (1997). Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale watershed, Rocky Mountain National Park. Biogeochemistry 36:99–124

    Article  Google Scholar 

  • McKnight D.M., Hood E., Klapper L. (2003). Trace organic moieties of dissolved organic material in natural waters. In: Findlay S.E.G., Sinsabaugh R.L. (eds). Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego, pp. 71–96

    Google Scholar 

  • Meili M. (1992). Sources, concentrations and characteristics of organic matter in softwater lakes and streams of the Swedish forest region. Hydrobiologia 229:23–41

    Google Scholar 

  • Norrman B., Zweifel U.L., Hopkinson C.S., Fry B. (1995). Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol. Oceanogr. 40:898–907

    Article  Google Scholar 

  • Opsahl S.P., Zepp R.G. (2001). Photochemically-induced alteration of stable carbon isotope ratios (\(\delta^{13}\)C) in terrigenous dissolved organic carbon. Geophys. Res. Lett. 28:2417–2420

    Article  Google Scholar 

  • Osburn C.L., Morris D.P., Thorn K.A., Moeller R.E. (2001). Chemicaly and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54:251–278

    Article  Google Scholar 

  • Pace M.L., Cole J.J. (2000). Effects of whole-lake manipulations of nutrient loading and food web structure on planktonic respiration. Can. J. Fish. Aquat. Sci. 57:1–10

    Article  Google Scholar 

  • Pace M.L.,Cole J.J., Carpenter S.R., Kitchell J.F., Hodgson J.R., Van de Bogert M., Bade D.L., Kritzberg E.S., Bastviken D. (2004). Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243

    Article  Google Scholar 

  • Rasmussen J.B., Godbout L., Schallenberg M. (1989). The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34:1336–1343

    Article  Google Scholar 

  • Reche I., Pace M.L., Cole J.J. (1998). Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microb. Ecol. 36:270–280

    Article  Google Scholar 

  • Schiff S.L., Aravena R., Trumbore S.E., Hinton M.J., Elgood R., Dillon P.J. (1997). Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: clues from 13C and 14C. Biogeochemistry 36:43–65

    Article  Google Scholar 

  • Schindler D.W., Bayley S.E., Curtis P.J., Parker B.R., Stainton M.P., Kelly C.A. (1992). Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia 229:1–21

    Google Scholar 

  • Schindler D.W., Curtis P.J. (1997). The role of DOC in protecting freshwaters subjected to climatic warning and acidification from UV exposure. Biogeochemistry 36:1–8

    Article  Google Scholar 

  • Søndergaard M., Middelboe M. (1995). A cross-system analysis of labile dissolved organic carbon. Mar. Ecol. Prog. Ser. 118:283–294

    Google Scholar 

  • Sundh I., Bell R.T. (1992). Extracellular dissolved organic carbon released from phytoplankton as a source of carbon for heterotrophic bacteria in lakes of different humic content. Hydrobiologia 229:93–106

    Google Scholar 

  • Thurman E.M. (1985). Organic Geochemistry of Natural Waters. Nijhoff/Junk, Dordrecht, Netherlands

    Google Scholar 

  • Traina S.J., Novak J., Smeck N.E. (1990). An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids. J. Environ. Qual. 19:151–153

    Article  Google Scholar 

  • Tranvik L. (1998). Degradation of dissolved organic matter in humic wates by bacteria. In: Hessen D.O., Tranvik L. (eds). Aquatic Humic Substances: Ecology and Biogeochemistry. Springer-Verlag, Berlin, pp. 259–283

    Google Scholar 

  • Tranvik L.J. (1992). Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229:107–114

    Google Scholar 

  • Waiser M.J., Robarts R.D. (2004). Photodegradation of DOC in a shallow prairie wetland: evidence from seasonal changes in DOC optical properties and chemical characteristics. Biogeochemistry 69:263–284

    Article  Google Scholar 

  • Wetzel R.G. 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press.

  • Wetzel R.G., Hatcher P.G., Bianchi T.S., (1995). Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40:1369–1380

    Article  Google Scholar 

  • Williamson C.E., Morris D.P., Pace M.L., Olson A.G.(1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol. Oceanogr. 44:795–803

    Article  Google Scholar 

  • Xenopoulos M.A., Lodge D.M., Frentress J., Kreps T.A., Bridgham S.D., Grossman E., Jackson C.J. (2003). Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol. Oceanogr. 48:2321–2334

    Article  Google Scholar 

Download references

Acknowledgements

We thank Crystal Fankhauser, Molli MacDonald, Angela Modra, and R. Adam Ray for assistance in the field and laboratory, Kristi Judd and anonymous reviewers for helpful reviews and comments. Norma Haubenstock and Robert Drimmie provided isotope analysis. We thank Gary Belovsky and Karen Francl of the University of Notre Dame Environmental Research Center for supporting our field research and providing access to the experimental lakes used in this study. The University of Wisconsin Trout Lake Station aided with logistical support. This study was made possible by financial support from the National Science Foundation (Grant No.’s DEB-0414262 and OPP-0097182) and the Andrew W. Mellon Foundation. This is a contribution to the UW-Madison Center for Limnology and the Institute of Ecosystem Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren L. Bade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bade, D.L., Carpenter, S.R., Cole, J.J. et al. Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions. Biogeochemistry 84, 115–129 (2007). https://doi.org/10.1007/s10533-006-9013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9013-y

Keywords

Navigation