Biogeochemistry

, Volume 79, Issue 1–2, pp 251–274 | Cite as

The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil

  • Jean P. H. B. Ometto
  • James R. Ehleringer
  • Tomas F. Domingues
  • Joseph A. Berry
  • Françoise Y. Ishida
  • Edmar Mazzi
  • Niro Higuchi
  • Lawrence B. Flanagan
  • Gabriela B. Nardoto
  • Luiz A. Martinelli
Article

Abstract

Here we present the within-site, seasonal, and interannual variations of the carbon (δ13C) and nitrogen (δ15N) isotope ratios of leaves, wood, bark and litter from four sites in the Amazon region, Brazil. Samples were collected in Manaus (3° 06′07′′ S; 60°01′30′′ W), Ji-Paraná (10°53′07′′ S; 61°57′06′′ W), and Santarém (2°26′35′′ S; 54°42′30′′ W) with mean annual precipitation of 2207, 2040 and 1909 mm respectively. The overall average for all leaf samples was \(-32.3\pm2.5\permille\) for δ13C and \(+5.8\pm1.6\permille\) for δ15N (n=756). The leaf δ values at these sites were often but not always statistically distinct from each other. The δ13C values varied from \(-37.8\permille\) to \(-25.9\permille\). Pronounced differences in δ13C values occurred with height associated with differences in forest structure. The δ13C of leaf dry matter showed seasonal variations associated with the length of the dry season, despite the fact that total annual precipitation was similar among the studied sites. Leaf δ15N values ranged from \(+0.9\permille\) to a maximum value of \(+10.9\permille\), and the Santarém sites showed more enriched values than Manaus and Ji-Paraná sites. No seasonal variation was detected in the δ15N of leaves, but significant differences were observed among sites and with changes in canopy height. The isotope ratio data are consistent with our current understanding of the roles of light, water availability, and recycling of soil-respired CO2 influences on δ13C and consistent with our understanding that an open nitrogen cycle can lead to high δ15N values despite a significant number of legumes in the vegetation.

Key words

Amazon Carbon Nitrogen Stable isotope Primary forest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alder D., Silva J.N.M. (2000) An empirical cohort model for management of Terra Firme forests in Brazilian Amazon. Forest Ecol. Manage. 130: 141–157CrossRefGoogle Scholar
  2. Amundson R., Austin A.T., Schuur E.A.G., Yoo K., Matzek V., Kendall C., Uebersax A., Brenner D., Baisden W.T. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1): 1031, Doi: 10.1029/2002GB001903CrossRefADSGoogle Scholar
  3. Araujo A.C., Nobre A.D., Kruijt B., Culf A.D., Stefani P., Elbers J., Dallarosa R., Randow C., Manzi A.O., Valentini R., Gash J.H.C., Kabat P. (2002) Dual tower longterm study of carbon dioxide fluxes for a central Amazonian rain forest: The Manaus LBA site. J. Geophys. Res. Atmosph. 107(D20): 8090, doi: 10.1029/2001JD000676CrossRefADSGoogle Scholar
  4. Austin A., Vitousek P.M. (1998) Nutrient dynamics on a precipitation gradient. Oecologia 113: 519–529CrossRefGoogle Scholar
  5. Bassow S.L., Bazzaz F.A. (1997) Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 13: 507–515CrossRefGoogle Scholar
  6. Berry S.C., Varney G.T., Flanagan L.B. (1997) Leaf δ13C in Pinus resinosa trees and understory plants: variation associated with light and CO2 gradients. Oecologia 13: 499–506CrossRefGoogle Scholar
  7. Bonal D., Barigah T.S., Graniers A., Guehl J.M. (2000a) Late stage canopy tree species with extremely low δ13C and hight stomatal sensitivity to seasonal soil drought in the tropical rain forest of French Guiana. Plant Cell Environ. 23: 445–459CrossRefGoogle Scholar
  8. Bonal D., Sabatier D., Montpied P., Tremeaux D., Guehl J.M. (2000b) Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124: 454–468CrossRefGoogle Scholar
  9. Broadmeadow M.S.J., Griffiths H. (1993) Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. In: Ehleringer J.R., Hall A.E., Farquhar G.D. (eds) Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego, pp. 109–130Google Scholar
  10. Broadmeadow M.S.J., Griffiths H., Maxwell C., Borland A.M. (1992) The carbon isotope ratio of plant organic material reflects temporal and spatial variation in CO2 within tropical forest formations in Trinidad. Oecologia 89: 435–441Google Scholar
  11. Buchmann N., Guehl J.M., Barigah T.S., Ehleringer J.R. (1997) Interseasonal comparison of CO2 concentrations, isotopic composition and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110: 120–131CrossRefGoogle Scholar
  12. Bustamante M.M.C., Martinelli L.A., Silva D.A., Camargo P.B., Klink C.A., Domingues T.F., Santos R.V. (2004) δ13N natural abundance in woody plants and soils of central Brazilian savannas (cerrado). Ecol. Appl. 14(4): S200–S213 Suppl. S, AUGGoogle Scholar
  13. Camargo P.B., Trumbore S., Martinelli L.A., Davidson E., Nepstad D., Victoria R.L. (1999) Soil carbon dynamic in regroying forest in Eastern Amazonia. Global Change Biol. 5: 693–702CrossRefGoogle Scholar
  14. Cuevas E., Medina E. (1988) Nutrient dynamics within Amazonian forests. II fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76: 222–235CrossRefGoogle Scholar
  15. Davidson E., Ishida F.Y. and Nepstad D.C. 2004. Effects of an Experimental Drought on Soil Emissions of Carbon Dioxide, Methane, Nitrous Oxide, and Nitric Oxide in a Moist Tropical Forest. Global Change Biol. v. 10Google Scholar
  16. Donovan L.A., Ehleringer J.R. (1992) Contrasting water-use patterns among size and life-history classes of a semi-arid shrub. Funct. Ecol. 6: 482–488CrossRefGoogle Scholar
  17. Ehleringer J.R., Monson R.K. (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Ann. Rev. Ecol. Systemat. 24: 411–439CrossRefGoogle Scholar
  18. Ehleringer J.R., Bowling D.R., Flanagan L., Fessender J., Helliker B., Martinelli L.A., Ometto J.P.H.B. (2002) Stable isotopes and carbon cycle in forests and grasslands. Plant Biol. 4: 181–189CrossRefGoogle Scholar
  19. Ehleringer J.R., Field C.B., Lin Z.F., Kuo C.Y. (1986) Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70: 520–526CrossRefGoogle Scholar
  20. Ehleringer J.R., Buchmann N., Flanagan L.B. (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl. 10: 412–422Google Scholar
  21. Evans R.D., Ehleringer J.R. (1993) A break in the nitrogen cycle in aridlands? Evidence from δ13N of soils. Oecologia 94: 314–317CrossRefGoogle Scholar
  22. Evans R.D. (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends plant science 6(3): 121–126CrossRefADSGoogle Scholar
  23. Farquhar G.D., Ehleringer J.R., Hubick K.T. (1989) Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537CrossRefGoogle Scholar
  24. Farquhar G.D., O’Leary M.H., Berry J.A. (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 121–137CrossRefGoogle Scholar
  25. Fessenden J.E., Ehleringer J.R. (2002) Age dependent variations in the δ13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest. Tree Physiol. 22: 159–167PubMedGoogle Scholar
  26. Field C.B., Behrenfeld M.J., Randerson J., Falkowski (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240PubMedCrossRefADSGoogle Scholar
  27. Fisch G., Marengo J.M., Nobre C.A. (1998) Uma revisão geral sobre o clima na Amazônia. Acta Amazonica 28(2): 101–126Google Scholar
  28. Gash J.H.C., Huntingford C., Marengo J.A., Betts R.A., Cox P.M., Fisch G., Fu R., Gandu A.W., Harris P.P., Machado L.A.T., von Randow C., Silva Dias M.A. (2004) Amazonian climate: results and future research. Theor. Appl. Climatol. 78: 187–193, LBA Special IssueADSGoogle Scholar
  29. Gebauer G., Schulze E.D. (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87: 198–207CrossRefGoogle Scholar
  30. Gehring C. (2003) The Role of Biological Nitrogen Fixation in Secondary and Primary Forests of Central Amazonia Doctoral Dissertation. Faculty of Agriculture Rheinische Friedrich-Wilhelm-Universität Bonn, GermanyGoogle Scholar
  31. Goulden M.L., Miller S.D., Rocha H.R., Menton M.C., Freitas H.C., Figueira A.M.S., Souza C.A.D. (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 14: S42–S54Google Scholar
  32. Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Moncrieff J., Massheder J., Wright I., Gash J. (1995b) Fluxes of carbon dioxide and water vapor over an undisturbed tropical forest in south-west Amazonia. Global Change Biol. 1: 1–12CrossRefGoogle Scholar
  33. Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Nobre C., Moncrieff J., Massheder J., Malhi Y., Wright I., Gash J. (1995a) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992–1993. Science 270: 778–780ADSGoogle Scholar
  34. Grace J., Malhi Y., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S. (1996) The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biol. 2: 208–217CrossRefGoogle Scholar
  35. Guehl J.M., Domenach A.M., Bereau M., Barigah T.S., Casabianca H., Ferhi A., Garbaye J. (1998) Functional diversity in an Amazonian rainforest of French Guyana: a dual isotope approach (δ13N and δ13C). Oecologia 116(3): 316–330, SEPCrossRefGoogle Scholar
  36. Guehl J.M., Domenach A.M., Bereau M., Barigah T.S., Casabianca H., Ferhi A., Garbaye J. (1998) Functional diversity in an Amazonian rainforest of French Guyana. A dual isotope approach (δ13N and δ13C). Oecologia 116: 316–330CrossRefGoogle Scholar
  37. Handley L., Austin A., Robinson D., Scrimgeour C., Raven J., Heaton T., Schmidt S., Stewart G. (1999) The 15-N natural abundance (δ13N) of ecosystem samples reflects measures of water availability, Aust. J. Plant Phys. 26: 185–199CrossRefGoogle Scholar
  38. Higuchi N., Santos J., Ribeiro R.J., Minette L., Biot Y. (1998) Biomassa da parte aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazônica 28: 153–166Google Scholar
  39. Hodnett M.G., Oyama M.D., Tomazella J., Marques Filho A.O. (1996) Comparisons of long term soil water storage behavior under pasture and forest in three areas of Amazonia. In: Gash J.H.C., Nobre C.A., Roberts J.M., Victoria R.L. (eds) Amazonian Deflorestation and Climate. John Wiley & Sons, Chichester, U.K, pp. 79–100Google Scholar
  40. Högberg P., Johannisson C. (1993) δ13N abundance of forests is correlated with losses of nitrogen. Plant Soil 157: 147–150Google Scholar
  41. Högberg P. (1990) 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 115: 483–486CrossRefGoogle Scholar
  42. Hogberg P. (1997) 15N natural abundance in soil-plant systems. New Phytol 137: 179–203CrossRefGoogle Scholar
  43. Jackson P.C., Meinzer F.C., Goldstein G., Holbrook N.M., Cavelier J., Rada F. (1993) Environmental and physiological influences on carbon isotope composition of gap and understorey plants in a lowland tropical forest. In: Ehleringer J.R., Hall A.E., Farquhar G.D. (eds) Stable Isotopes and Plant Carbon–Water Relations. Academic Press, San Diego, pp. 131–140Google Scholar
  44. Kapos V., Ganade G., Matsui E., Victoria R.L. (1993) δ13C as an indicator of edge effects in tropical rain forest reserves. J. Ecol. 81: 425–432CrossRefGoogle Scholar
  45. Kruijt B., Lloyd J., Grace J., McIntyre J., Farquhar G.D., Miranda A.C., McCracken P. (1996) Sources and sinks of CO2 in Rondonian tropical forest, inferred from concentrations and turbulence along a vertical gradient. In: Gash J.H.C., Nobre C.A., Roberts J.M., Victoria R.L. (eds) Amazonian Deflorestation and Climate. John Wiley & Sons, Chichester, U.K, pp. 331–351Google Scholar
  46. Leffler Aj., Enquist Bj (2002) Carbon isotope composition of tree leaves from Guanacaste, Costa Rica: comparison Across tropical forests and tree life history. J. Trop. Ecol. 18: 151–159CrossRefGoogle Scholar
  47. Lloyd J., Grace J., Miranda A.C., Meir P., Wong S.C., Miranda H.S., Wright I.R., Gash J.H.C., McIntyre J. (1996) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell Environ. 18: 1129–1145CrossRefGoogle Scholar
  48. Luizão R.C.C., Luizão F.J., Paiva R.Q., Monteiro T.F., Sousa L.S., Kruijt B. (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biol. 10: 592–600, doi: 10.1111/j.1529-8817.2003.00757.xCrossRefGoogle Scholar
  49. Malhi Y., Baldocchi D.D., Jarvis P.G. (1999) The carbon balance of tropical, temperate and boreal forests. Plant, Cell Environ. 22: 715–740CrossRefGoogle Scholar
  50. Marengo J.A., Hastenrath S. (1993) Case studies of climatic events in Amazon basin. J. Climate 6(4): 617–627CrossRefADSGoogle Scholar
  51. Marengo J.A. (1992) Interannual variability of surface climate in the Amazon basin. J. Climatol. 12(8): 853–863Google Scholar
  52. Martinelli L.A., Almeida S., Brown I.F., Moreira M.Z., Victoria R.L., Sternberg L.S.L., Ferreira C.A.C., Thomas W.W. (1998) Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondônia, Brazil. Oecologia 114: 170–179CrossRefGoogle Scholar
  53. Martinelli L.A., Piccolo M.C., Townsend A.R., Vitousek P.M., Cuevas E., Mcdowell W., Robertson G.P., Santos O.C., Treseder K. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46(1–3): 45–65Google Scholar
  54. McKey D. (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent J.I., McKey D. (eds) Advances in Legume Systematics 5: The Nitrogen Factor. Royal Botanic Gardens, Kew, UK, pp. 221–228Google Scholar
  55. Medina E., Minchin P. (1980) Stratification of δ13C values of leaves in Amazonian rainforests. Oecologia 45: 355–378CrossRefGoogle Scholar
  56. Medina E., Sternberg L., Cuevas E. (1991) Vertical stratification of δC values in closed and natural plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87: 369–372CrossRefGoogle Scholar
  57. Meints V.W., Boone L.V., Kurtz L.T. (1975) Natural 15N abundance in soil, leaves, and grain as influenced by long term additions of fertilizer N at several rates. J. Environ. Qual. 4: 486–90CrossRefGoogle Scholar
  58. Merwe N.J. van der, Medina E. (1989) Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta 53: 1091–1094CrossRefADSGoogle Scholar
  59. Miller S.D., Goulden M.L., Menton M.C., Rocha H.R., Freitas H.C., Figueira A.M.S., Sousa C.A.D. (2004) Biometric and Micrometeorological Measurements of Tropical Forest Carbon Balance. Ecol. Appl. 14(4): S114–S126, SupplementGoogle Scholar
  60. Moreira de Souza F.M., da Silva M.F., de Faria S.M. (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol. 121: 563–570CrossRefGoogle Scholar
  61. Natelhoffer K.J., Fry B. (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Soc. Am. J. 52:1633–1640CrossRefGoogle Scholar
  62. Obregon G., Nobre C.A. (1990). Principal component analysis of precipitation fields over Amazon river basin. Climanálise 5(7): 35–46Google Scholar
  63. Ometto J.P.H.B., Flanagan L., Martinelli L.A., Moreira M.Z., Higuchi N., Ehleringer J.R. (2002) Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochem. Cycles 16:1109CrossRefADSGoogle Scholar
  64. Panek J.A. (1996) Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA. Tree Physiol. 16(9):747–55PubMedGoogle Scholar
  65. Robinson D. (2001). δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16:153–162PubMedCrossRefGoogle Scholar
  66. Roggy J.C., Preâvost M.F., Garbaye J., Domenach A.M. (1999a) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using d15N. J. Trop. Ecol. 15:1–22CrossRefGoogle Scholar
  67. Roggy J.C., Prevost M.F., Gourbiere F., Casabianca H., Garbaye J., Domenach A.M. (1999b) Leaf natural “δN abundance and total Nconcentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120: 171–182CrossRefGoogle Scholar
  68. Saleska S.R., Miller S.D., Matross D.M., Goulden M.L., Wofsy S.C., da Roacha H.R., de Camargo P.B., Crill P., Daube B.C., de Freitas H.C., Hutyra L., Keller M., Kirchoff V., Menton M., Munger J.W., Pyle E.H., Rice A.H. & Silva H. (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557PubMedCrossRefADSGoogle Scholar
  69. Schimel D.S. (1995) Terrestrial ecosystems and the carbon-cycle. Global Change Biol. 1: 77–91CrossRefGoogle Scholar
  70. Souza L.A.G., de Silva M.F., da und Moreira F.W. (1994). Capacidade de nodulação de cem Leguminosas da Amazônia. Acta Amazônica 24(1/2): 9–19Google Scholar
  71. Sprent J.I. (1995) Legume trees and shrubs in the tropics: N2 fixation in perspective. Soil Biol. Biochem. 7: 401–407CrossRefGoogle Scholar
  72. Sternberg L.S.L., Mulkey S.S., Wright S.J. (1989) Ecological interpretation of leaf isotope ratios: influence of respired carbon dioxide. Ecology 70: 1317–1324CrossRefGoogle Scholar
  73. Stewart G.R., Joly A.C., Smirnoff N. (1992) Partitioning of inorganic nitrogen assimilation between roots and shoots of cerrado and forest trees of contrasting plant communities of South East Brazil. Oecologia 91:511–517CrossRefGoogle Scholar
  74. Sylvester-Bradley R., Oliveira L.A., Podestá Filho J.A., St. John T.V. (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum spp. in representative soils of Central Amazonia. Agro-Ecosystems 6:249–66CrossRefGoogle Scholar
  75. Telles E.C.C., de Camargo P.B., Martinelli L.A., Trumbore S.E., da Costa E.S., Santos J., Higuchi N. and Oliveira Jr R.O. 2003. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochem. Cycles 17-1040 doi: 10.1029/2002GB001953Google Scholar
  76. Vieira S., Camargo P.B., Selhorst D., Silva R., Hutyra L., Chambers J.Q., Brown I.F., Higuchi N., Santos J., Wofsy S.C., Trumbore S.E., Martinelli L.A. (2004) Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 140: 468–479 doi: 10.1007/s00442-004-1598-zPubMedCrossRefGoogle Scholar
  77. Vitousek P.M, Cassman K., Cleveland C., Crews T., Field C.B., Grimm N.B., Howarth R.W., Marino R., Martinelli L., Rastetter E.B., Sprent J.I. (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57/58: 1–45Google Scholar
  78. Walcroft A.S., Silvester W.B., Grace J.C., Carson S.D., Waring R.H. (1996) Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiol. 16: 281–286PubMedGoogle Scholar
  79. Walcroft A.S., Whitehead D., Silvester W.B., Kelliher F.M. (1997) Determination of photosynthetic model parameters in response to temperature and nitrogen concentration in Pinus radiata D. Don. Plant, Cell Environ. 20: 1338–1348CrossRefGoogle Scholar
  80. Yoneyama T., Muraoka T., Murakami T., Boonkerd N. (1993) Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153: 295–304CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jean P. H. B. Ometto
    • 1
  • James R. Ehleringer
    • 2
  • Tomas F. Domingues
    • 2
  • Joseph A. Berry
    • 3
  • Françoise Y. Ishida
    • 1
  • Edmar Mazzi
    • 1
  • Niro Higuchi
    • 4
  • Lawrence B. Flanagan
    • 5
  • Gabriela B. Nardoto
    • 1
  • Luiz A. Martinelli
    • 1
  1. 1.Centro de Energia Nuclear na AgriculturaPiraciaba-SPBrazil
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA
  3. 3.Carnegie InstituteWashingtonUSA
  4. 4.Instituto de Pesquisas da AmazoniaManausBrazil
  5. 5.University of LethbridgeLethbridgeCanada

Personalised recommendations