Advertisement

Biogeochemistry

, Volume 76, Issue 3, pp 477–501 | Cite as

Short-term Nitrogen Fixation by Legume Seedlings and Resprouts After Fire in Mediterranean Old-fields

  • P. Casals
  • J. Romanya
  • V. R. Vallejo
Article

Abstract

Fires may greatly alter the N budget of a plant community. During fire nitrogen is lost to the atmosphere. Although high light availability after fire promotes N2-fixation, the presumably high soil N availability could limit N2-fixation activity. The latter limitation might be particularly acute in legume seedlings compared with resprouts, which have immediate access to belowground stored carbon. We wished to learn whether early post-fire conditions were conducive to N2-fixation in leguminous seedlings and resprouts in two types of grassland and in a shrubland and whether seedlings and resprouts incurred different amounts of N2-fixation after fire. We set 18 experimental fires in early autumn on 6 plots, subsequently labelling 6 subplots (2 × 2 m2) in each community with 15NH4 +-N (99 atom % excess). For 9 post-fire months we measured net N mineralisation in the top 5 cm of soil and we calculated the fraction of legume N derived from the atmosphere (%Ndfa) in seedlings and resprouts. We used two independent estimates of the amounts of N derived from non-atmospheric sources in potentially N2-fixing plants: mean soil pool abundance and the 15N-enrichment of non-legumes. Despite substantial soil net N mineralisation in all burned community types (about 2.6 g Nm−2 during the first nine months after fire), the %Ndfa of various legume species was 52–99%. Legumes from both grasslands showed slightly higher N2-fixation values than shrubland legumes. As grassland legumes grew in more belowground dense communities than shrubland legumes, we suggest that higher competition for soil resources in well established grass-resprouting communities may enhance the rate of N2-fixation after fire. In contrast to our hypothesis, legume seedlings and resprouts from the three plant communities studied, had similar %Ndfa and apparently acquired most of their N from the atmosphere rather than from the soil.

Keywords

Grassland Isotope dilution method Shrubland Soil-N mean pool abundance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arianoutsou, M., Thanos, C.A. 1996Legume in the fire-prone Mediterranean regions: an example from GreeceInt. J. Wildland Fire67782CrossRefGoogle Scholar
  2. Barraclough, D. 1991The use of mean pool abundance to interpret 15N tracer experiments. I. TheoryPlant Soil1318996Google Scholar
  3. Bell, D.T., Koch, J.M. 1980Post-fire succession in the northern jarrah forest of Western AustraliaJ. Ecol.5914Google Scholar
  4. Bell, T.L., Ojeda, F. 1999Underground starch storage in Erica species of the Cape Floristic Region – differences between seeders and resproutersNew Phytol.144143152CrossRefGoogle Scholar
  5. Blair, J.M. 1997FireN availability, and plant response in grasslands: a test of the transient maxima hypothesisEcology7823592368Google Scholar
  6. Bolòs O. de and Vigo J. 1984. Flora dels Països Catalans. Barcino Ed, Barcelona, Spain.Google Scholar
  7. Busse, M.D. 2000Suitable and use of the 15N-isotope dilution method to estimate nitrogen fixation by actinorhizal shrubsForest Ecol. Manage.1368595Google Scholar
  8. Crews, T.E. 1999The presence of N fixing legumes in terrestrial communities: Evolutionary vs ecological considerationsBiogeochemistry46233246Google Scholar
  9. Chalk, P.M., Smith, C.J., Hopmans, P., Hamilton, S.D. 1996A yield-independent15N-isotope dilution method to estimate legume symbiotic dependence without a non-N2-fixing reference plantBiol. Fert. Soils23196199Google Scholar
  10. Danso, S.K.A., Hardarson, G., Zapata, F. 1993 Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2-fixationPlant Soil1522552CrossRefGoogle Scholar
  11. DiStefano, J., Gholz, H.L. 1986A proposed use of the ion exchange resin to measure nitrogen mineralisation and nitrification in intact soil coresComm. Soil Sci. Plant Anal.17989998CrossRefGoogle Scholar
  12. Hanes, T.L. 1971Succession after fire in the chaparral of southern CaliforniaEcol. Monogr.412752Google Scholar
  13. Hansen, A.P., Pate, J.S., Hansen, A., Bell, D.T. 1987Nitrogen economy of post fire stands of shrub legumes in jarrah (Eucalyptus marginata Donn ex Sm.) forest of S.W. AustraliaJ. Exp. Bot.382641Google Scholar
  14. Hendicks, J.J., Boring, L.R. 1992Litter quality of legumes in a burned pine forest of the Georgia PiedmontCan. J. Forest Res.2220072010Google Scholar
  15. Hendricks, J.J., Boring, L.R. 1999N2-fixation by native herbaceous legumes in burned pine ecosystems of the southeastern United StatesForest Ecol. Manage.113167177Google Scholar
  16. Keeley, J.E., Zedler, P.J. 1978Reproduction of chaparral shrubs after fire: a comparison of sprouting and seeding strategiesAm. Midland Nat.99142161Google Scholar
  17. Lloret, F., Casanovas, C., Peñuelas, J. 1999Seedling survival of Mediterranean shrubland species in relation to root:shoot ratioseed size and water and nitrogen useFunct. Ecol.13210216CrossRefGoogle Scholar
  18. Masalles, R.M., Vigo, J. 1987La successió a les terres mediterrànies: sèries de vegetacióTerradas, J. eds. Ecosistemes Terrestres La resposta als incendis i a d’altres pertorbacionsDiputació de BarcelonaBarcelonaSpain2743Google Scholar
  19. Marschner, M. 1995Mineral Nutrition of Higher Plants2Academic PressNew York, U.S.AGoogle Scholar
  20. McAuliffe, C., Chamblee, D.S., Uribe-Arango, H., Woodhouse, W.W.,Jr. 1958Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by 15NAgron. J.50334337CrossRefGoogle Scholar
  21. McKey, D. 1994Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyleSprent, J.I.Mckey, D. eds. Legume Systematics, 5. The Nitrogen FactorRoyal Botanic GardensKew, England211228Google Scholar
  22. Naveh, Z. 1967Mediterranean ecosystems and vegetation types in California and IsraelEcology48445459Google Scholar
  23. Naveh, Z. 1975The evolutionary significance of fire in the Mediterranean regionVegetatio9199206Google Scholar
  24. Ojima, D.S., Schimel, D.S., Parton, W.J., Owensby, C.E. 1994Long- and short-term effects of fire on nitrogen cycling in tallgrass prairieBiogeochemistry246784Google Scholar
  25. Papavassiliou, S., Arianoutsou, M. 1993Regeneration of the leguminous herbaceous vegetation following fire in a Pinus halepensis Mill. forest of AtticaGreeceTrabaud, L.Prodon, R. eds. Mediterranean EcosystemsCommission of the European CommunitiesBrussels-Luxembourg119125Ecosystems Research Report No. 5Google Scholar
  26. Pate, J.S., Froend, R.H., Bowen, B.J., Hansen, A., Kuo, J. 1990Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of S.W. AustraliaAnn. Bot.65585601Google Scholar
  27. Rastetter, E.B., Vitousek, P.M., Field, C., Shaver, G.R., Herbert, D., Ågren, G.I. 2001Resource optimization and symbiotic nitrogen fixationEcosystems4369388CrossRefGoogle Scholar
  28. Romanyà, J., Casals, P., Vallejo, V.R. 2001Short-term effects of fire on soil nitrogen availability in Mediterranean grasslands and shrublands growing in old fieldsForest Ecol. Manage.1473953Google Scholar
  29. Rundel, P.W. 1981The matorral zone of Central ChileCastri, F.Goodall, D.W.Specht, R.L. eds. Mediterranean-Type ShrublandsElsevierAmsterdam175201Google Scholar
  30. Shearer, G., Kohl, D.H. 1986N2-fixation in field settings: estimations based on natural 15N abundanceAust. J. Plant Physiol.13699756Google Scholar
  31. Spetch, R.L. 1981Responses to fires in heathlands and other related shrublandsGill, A.M.Groves, R.H.Noble, I.R. eds. Fire and the Australian biotaAustralian Academy of ScienceCanberra, Australia395415Google Scholar
  32. Stark, J.M., Hart, S.C. 1996Diffusion technique for preparing salt solutions, kjeldahl digests, and persulfate digests for Nitrogen-15 analysisSoil Sci. Soc. Am. J.6018461855CrossRefGoogle Scholar
  33. Vitousek, P.M., Howarth, R.W. 1991Nitrogen limitation on land and in the sea: How can it occur?Biogeochemistry1387115CrossRefGoogle Scholar
  34. Vitousek, P.M., Field, C.B. 1999Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implicationsBiogeochemistry46179202Google Scholar
  35. Vitousek, P.M., Cassman, K., Cleveland, C., Crews, T., Field, C.B., Grimm, N.B., Howarth, R.W., Marino, R., Martinelli, L., Rastetter, E.B., Sprent, J.I. 2002Towards an ecological understanding of biological nitrogen fixationBiogeochemistry57145Google Scholar
  36. Waterer, J.G., Vessey, J.K. 1993Effects of low static nitrate concentration on mineral nitrogen uptakenodulation and nitrogen fixation in field peaJ. Plant Nutr.1617751789CrossRefGoogle Scholar
  37. Witty, J.F. 1983Estimating N2-fixation in the field using 15N-labelled fertilizer: some problems and solutionsSoil Biol. Biochem.15631639CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Area d’Ecologia Vegetal i Botànica ForestalCentre Tecnològic Forestal de CatalunyaSolsonaSpain
  2. 2.Departament Productes Naturals, Biologia Vegetal i EdafologiaUniversitat de BarcelonaAvgdaSpain
  3. 3.Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM)Parque Tecnológico c/ ChDarwinSpain
  4. 4.Departament Biologia Vegetal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations