Skip to main content
Log in

The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The use of strontium isotopes and ratios of alkaline earth elements (i.e., 87Sr/86Sr and Ca/Sr) to trace Ca sources to plants has become common in ecosystem studies. Here we examine the relative uptake of Ca and Sr in trees and subsequent accumulation in foliage. Using a whole-watershed Ca addition experiment at the Hubbard Brook Experimental Forest in N.H., we measured the uptake of Ca relative to Sr in foliage and roots of sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis), American beech (Fagus grandifolia), and red spruce (Picea rubens). Vegetation was analyzed for Ca and Sr concentrations and the 87Sr/86Sr ratio. A comparison of the Ca/Sr ratio in the vegetation and the Ca/Sr ratio of the applied mineral allows for the calculation of a discrimination factor, which defines whether Ca and Sr are incorporated and allocated in the same ratio as that which is available. A discrimination factor greater than unity indicates preferential uptake of Ca over Sr; a factor less than unity reflects preferential uptake of Sr over Ca. We demonstrate that sugar maple (SM) and yellow birch (YB) have similar and small discrimination factors (1.14 ± 0.12,1σ and 1.16 ± 0.09,1σ) in foliage formation and discrimination factors of less than 1 in root formation (0.55–0.70). Uptake into beech suggests a larger discrimination factor (1.9 ± 1.2) in foliage but a similar root discrimination factor to SM and YB (0.66 ± 0.06,1σ). Incorporation into spruce foliage occurs at a much slower rate than in these other tree species and precludes evaluation of Ca and Sr discrimination in spruce foliage at this time. Understanding the degree to which Ca is fractionated from Sr in different species allows for refinement in the use of 87Sr/86Sr and Ca/Sr ratios to trace Ca sources to foliage. Methods from this study can be applied to natural environments in which various soil cation pools have different 87Sr/86Sr and Ca/Sr ratios. The results reported herein have implications for re-evaluating Ca sources and fluxes in forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. Aberg (1995) ArticleTitleThe use of natural strontium isotopes as tracers in environmental studies Water Air Soil Pollut. 79 309–322 Occurrence Handle10.1007/BF01100444

    Article  Google Scholar 

  • G. Aberg G. Jacks P.J. Hamilton (1989) ArticleTitleWeathering rates and 87Sr/86Sr ratios: an isotopic approach J. Hydrol. 109 65–78 Occurrence Handle10.1016/0022-1694(89)90007-3

    Article  Google Scholar 

  • A.U. Baes P.R. Bloom (1988) ArticleTitleEffect of ionic-strength on swelling and the exchange of alkaline-earth cations in soil organic-matter Soil Sci. 146 67–72 Occurrence Handle10.1097/00010694-198808000-00002

    Article  Google Scholar 

  • Bailey S.W. and Hornbeck J.W. 1992. Res. Paper NE-662. Lithologic composition and rock weathering potential of forested, glacial-till soils 1992. USDA Forest ServiceNortheast Forest Experimental Station, Radnor, PA, USA.

  • S.W. Bailey J.W. Hornbeck C.T. Driscoll H.E. Gaudet (1996) ArticleTitleCalcium inputs and transport in a base-poor forest ecosystem as interpreted by strontium isotopes Water Res. Res. 32 707–719 Occurrence Handle10.1029/95WR03642

    Article  Google Scholar 

  • Barton C.C., Camerlo R.H. and Bailey S.W. 2000. Bedrock Geologic Map of Hubbard Brook Experimental Forest. 1997. U.S. Department of Interior, U.S. Geological Survey, Miscellaneous Investigation Series Map I-2562.

  • J.D. Blum A. Klaue C.A. Nezat C.T. Driscoll C.E. Johnson T.G. Siccama C. Eagar T.J. Fahey G.E. Likens (2002) ArticleTitleMycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems Nature 417 729–731 Occurrence Handle10.1038/nature00793

    Article  Google Scholar 

  • J.D. Blum E.H. Taliaferro M.T. Weisse R.T. Holmes (2000) ArticleTitleChanges in Sr/CaBa/Ca and Sr-87/Sr-86 ratios between trophic levels in two forest ecosystems in the northeastern USA Biogeochemistry 49 87–101 Occurrence Handle10.1023/A:1006390707989

    Article  Google Scholar 

  • M.G.M. Bruggenwert A. Kamphorst (1982) Survey of experimental information on cation exchange in soil systems G.H. Bolt (Eds) Soil Chemistry, B. Physico-Chemical Models Elsevier Amsterdam 141–203

    Google Scholar 

  • T.D. Bullen S.W. Bailey (2005) ArticleTitleIdentifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotopealkaline earth element multi-tracer approach Biogeochemistry 74 63–99 Occurrence Handle10.1007/s10533-004-2619-z

    Article  Google Scholar 

  • R.C. Capo B.W. Stewart O.A. Chadwick (1998) ArticleTitleStrontium isotopes as tracers of ecosystem processes: theory and methods Geoderma 82 197–225 Occurrence Handle10.1016/S0016-7061(97)00102-X

    Article  Google Scholar 

  • R. Collander (1941) ArticleTitleSelective absorption of cations by higher plants Plant Physiol. 16 691–720 Occurrence Handle10.1104/pp.16.4.691

    Article  Google Scholar 

  • C.T. Driscoll N.M. Johnson G.E. Likens M.C. Feller (1988) ArticleTitleEffects of acid deposition on the chemistry of headwater streams - a comparison between Hubbard BroohNew Hampshireand Jamieson CreehBritish Columbia Water Res. Res. 24 195–200

    Google Scholar 

  • R.W. Elias Y. Hirao C.C. Patterson (1982) ArticleTitleThe circumvention of the natural biopurification along nutrient pathways by atmospheric inputs of industrial lead Geochimi. Cosmochim. Acta. 46 2561–2580 Occurrence Handle10.1016/0016-7037(82)90378-7

    Article  Google Scholar 

  • T.J. Fahey et al. (2005) ArticleTitleSoil respiration and soil carbon balance in a northern hardwood forest ecosystem Can. J. For. Res. 35 244–253 Occurrence Handle10.1139/x04-182

    Article  Google Scholar 

  • Faure G. 1986. Principles of Isotope Geology. Wiley J. and Sons.

  • C.A. Federer et al. (1989) ArticleTitleLong-term depletion of calcium and other nutrients in eastern U.S. forests Environ. Manage. 13 593–601 Occurrence Handle10.1007/BF01874965

    Article  Google Scholar 

  • E.B. Ferguson E.G. Bollard (1976) ArticleTitleMovement of calcium in woody stems Ann. Bot. Lond. 40 1057–1065

    Google Scholar 

  • W.C. Graustein R.L. Armstrong (1983) ArticleTitleThe use of strontium-87/strontium-8 ratios to measure atmospheric transport into forested watersheds Science 219 289–292

    Google Scholar 

  • R.O. Hall et al. (2001) ArticleTitleBiogeochemical responses of two forest streams to a 2-month calcium addition Freshw. Biol. 46 291–302 Occurrence Handle10.1046/j.1365-2427.2001.00660.x

    Article  Google Scholar 

  • E. Hoffland R. Giesler A.G. Jongmans N. Breemen ParticleVan (2003) ArticleTitleFeldspar tunneling by fungi along natural productivity gradients Ecosystems 6 739–746 Occurrence Handle10.1007/s10021-003-0191-3

    Article  Google Scholar 

  • Hogan J.F. and Blum J.D. 2003. Tracing hydrologic flow paths in a small forested watershed using variations in (87)Sr(86)Sr[Ca]/[Sr], [Ba]/[Sr] and Delta O-18. Water Res. Res. 39.

  • T.G. Huntington et al. (2000) ArticleTitleCalcium depletion in a southeastern United States forest ecosystem Soil Sci. Soc. Am. J. 64 1845–1858 Occurrence Handle10.2136/sssaj2000.6451845x

    Article  Google Scholar 

  • K. Isermann (1981) Uptake of stable strontium by plants and effects on plant growth S.C. Skoryna (Eds) Handbook of Stablec Strontium Plenum Press New York 65–86

    Google Scholar 

  • C.E. Johnson A.H. Johnson T.G. Huntington T.G. Siccama (1991) ArticleTitleWhole-tree clear-cutting effects on soil horizons and organic-matter pools Soil Sci. Soc. Am. J. 55 497–502 Occurrence Handle10.2136/sssaj1991.03615995005500020034x

    Article  Google Scholar 

  • C.E. Johnson C.T. Driscoll T.G. Siccama G.E. Likens (2000) ArticleTitleElement fluxes and landscape position in a northern hardwood forest watershed ecosystem Ecosystems 3 159–184 Occurrence Handle10.1007/s100210000017

    Article  Google Scholar 

  • A.G. Jongmans et al. (1997) ArticleTitleRock-eating fungi Nature 389 682–683 Occurrence Handle10.1038/39493

    Article  Google Scholar 

  • G.E. Likens et al. (2004) ArticleTitleBuffering an acidic stream in New Hampshire with a silicate mineral Restor. Ecol. 12 419–428 Occurrence Handle10.1111/j.1061-2971.2004.00357.x

    Article  Google Scholar 

  • G.E. Likens C.T. Driscoll D.C. Buso (1996) ArticleTitleLong-term effects of acid rain: Response and recovery of a forest ecosystem Science 272 244–246

    Google Scholar 

  • G.E. Likens et al. (1994) ArticleTitleThe biogeochemistry of potassium at Hubbard Brook Biogeochemistry 25 61–125 Occurrence Handle10.1007/BF00000881

    Article  Google Scholar 

  • G.E. Likens et al. (1998) ArticleTitleThe biogeochemistry of calcium at Hubbard Brook Biogeochemistry 41 89–173 Occurrence Handle10.1023/A:1005984620681

    Article  Google Scholar 

  • G.M. Lovett A.W. Thompson J.B. Anderson J.J. Bowser (1999) ArticleTitleElevational patterns of sulfur deposition at a site in the Catskill Mountains, New York Atmos. Environ. 33 617–624 Occurrence Handle10.1016/S1352-2310(98)00124-1

    Article  Google Scholar 

  • R. G. Menzel W. R. Heald (1955) ArticleTitleDistribution of potassiumrubidiumcaesiumcalcium adn strontium within plants grown in nutrient solutions Soil Sci. 80 287–293

    Google Scholar 

  • E.K. Miller J.D. Blum A.J. Friedland (1993) ArticleTitleDetermination of soil exchangeable-cation loss and weathering rates using Sr isotopes Nature 362 438–441 Occurrence Handle10.1038/362438a0

    Article  Google Scholar 

  • N. Momoshima E.A. Bondietti (1990) ArticleTitleCation binding in wood: applications to understanding historical changes in divalent cation availability to red spruce Can. J. For. Res. 20 1840–1849

    Google Scholar 

  • C.A. Nezat J.D. Blum A. Klaue C.E. Johnson (2004) ArticleTitleInfluence of landscape position and vegetation on long-term weathering rates at the Hubbard Brook Experimental Forest, New Hampshire, USA Geochim. Cosmochim. Acta. 68 3065–3078 Occurrence Handle10.1016/j.gca.2004.01.021

    Article  Google Scholar 

  • S.C. Peters J.D. Blum C.T. Driscoll G.E. Likens (2004) ArticleTitleDissolution of wollastonite during the experimental manipulation of Hubbard Brook Watershed 1 Biogeochemistry 67 309–329 Occurrence Handle10.1023/B:BIOG.0000015787.44175.3f

    Article  Google Scholar 

  • A. Poszwa E. Dambrine B. Pollier O. Atteia (2000) ArticleTitleA comparison between Ca and Sr cycling in forest ecosystems Plant Soil. 225 299–310 Occurrence Handle10.1023/A:1026570812307

    Article  Google Scholar 

  • A. Poszwa et al. (2004) ArticleTitleVariations of bioavailable Sr concentration and 87Sr/86Sr ratios in boreal forest ecosystems Role of biocycling, mineral weathering and epth of root uptake Biogeochemistry 67 1–20 Occurrence Handle10.1023/B:BIOG.0000015162.12857.3e

    Article  Google Scholar 

  • L.T. Runia (1987) ArticleTitleStrontium and calcium distribution in plants: effect on paleodietary studies J. Archaeol. Sci. 14 599–608 Occurrence Handle10.1016/0305-4403(87)90078-1

    Article  Google Scholar 

  • M.M. Smits E. Hoffland A.G. Jongmans N. Breemen ParticleVan (2005) ArticleTitleContribution of mineral tunneling to total feldspar weathering Geoderma 125 59–69 Occurrence Handle10.1016/j.geoderma.2004.06.005

    Article  Google Scholar 

  • G. Sposito (1989) The Chemistry of Soils. 277 Oxford University Press New York

    Google Scholar 

  • G.L. Tierney T.J. Fahey (2002) ArticleTitleFine root turnover in a Northern Hardwood Forest: a direct comparison of the radiocarbon and minirhizotron methods Can. J. Forest Research-Revue Canadienne De Recherche Forestiere 32 1692–1697 Occurrence Handle10.1139/x02-123

    Article  Google Scholar 

  • N. Breemen ParticleVan et al. (2000) ArticleTitleMycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49 53–67 Occurrence Handle10.1023/A:1006256231670

    Article  Google Scholar 

  • D.S. Veresoglou et al. (1996) ArticleTitleShoot Sr concentrations in relation to shoot Ca concentrations and to soil properties Plant Soil. 178 95–100 Occurrence Handle10.1007/BF00011167

    Article  Google Scholar 

  • P.M. Vitousek M.J. Kennedy L.A. Derry O.A. Chadwick (1999) ArticleTitleWeathering versus atmospheric sources of strontium in ecosystems on young volcanic soils Oecologia 121 255–259 Occurrence Handle10.1007/s004420050927

    Article  Google Scholar 

  • P.M. Vitousek D.R. Turner K. Kitayama (1995) ArticleTitleFoliar nutrients during long-term soil development in Hawaiian montane rainforest Ecology 76 712–720 Occurrence Handle10.2307/1939338

    Article  Google Scholar 

  • H. Wallander D. Hagerberg (2004) ArticleTitleDo ectomycorrhizal fungi have a significant role in weathering of minerals in forest soil? Symbiosis 37 249–257

    Google Scholar 

  • S.A. Watmough P.J. Dillon (2003a) ArticleTitleMycorrhizal weathering in base-poor forests Nature 423 823–824 Occurrence Handle10.1038/423823b

    Article  Google Scholar 

  • S.A. Watmough P.J. Dillon (2003b) ArticleTitleCalcium losses from a forested catchment in south-central OntarioCanada Environ. Sci. Technol. 37 3085–3089 Occurrence Handle10.1021/es034034t

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Ash Dasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasch, A.A., Blum, J.D., Eagar, C. et al. The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition. Biogeochemistry 80, 21–41 (2006). https://doi.org/10.1007/s10533-005-6008-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-6008-z

Keywords

Navigation